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Abstract 
 Our study is demonstrated a new type of evolutionary sound synthesis method. This work based 

on the Fly algorithm, a Cooperative Co-evolution algorithm; it is derived from the Parisian evolution 
approach. The algorithm has relatively amended the position of individuals (the Flies) represented by 3-D 
points. The Fly algorithm has successfully investigated in different applications, starting with a real-time 
stereo vision for robotics. Also, the algorithm shows promising results in tomography to reconstruct 3-D 
images. The final application of the Fly algorithm was generating artistic images, such as digital mosaics. 
In all these applications, the flies’ representation started for simple, 3-D points, to complex one, the 
structure of 9-elements. Our method follows evolutionary digital art with the Fly algorithm in representing 
the pattern of the flies. They represented in a way of having their structure. This structure includes position, 
color, rotation angle, and size. Our algorithm has the benefit of graphics processing units (GPUs) to 
generate the sound waveform using the modern OpenGL Shading Language. 
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1. Introduction 

Nowadays, computers are used to simulate different types of human functions in the 
form of digital representation. For example, sound synthesizers are commonly run in the digital 
computer by implementing a computer program that produces digital sound samples 
(waveform)[1]. The algorithm is designed to emulate the target sound by tunning certain internal 
parameters[2]. These parameters are variable determined by the user implementation according 
to the desired sound. The algorithms that generate sound are called Sound synthesis 
techniques (SSTs). The classic SSTs implemented following a traditional mathematical 
technique for emulating the internal parameters. The estimated parameters for designing a 
functional form of SSTs are dependent problems relying on human skills. However, generating 
sounds is a remarkably difficult task, it is slightly inharmonic and the partials process a certain 
stochastic low-amplitude, high-frequency deviation[3]. 

Traditional sound synthesis needs comprehensive human experiences[4] and along 
with refinement, processes to estimate the internal parameters. The motivation behind this 
research is to find an alternative method to synthesis the target sound. Usually, techniques rely 
on tuning a large number of parameters, up to 200 or more in some cases, mathematically. 
However, the synthesizers show that they can be non-linearly responded to some parameters. 
This means any change of one parameter might be effected to another and small changing on 
one parameter can cause a large change in the sound[5]. Currently, these parameters have 
been automatically expressed through solving SST as an optimization problem using Artificial 
Evolution (AE)[1]. 

The first attempt to generate complex music sounds using the evolutionary paradigm 
described by Dawkins,1986[6].  

In 1993, Horner et al.[7] presented a type of evolutionary method which is Genetic 
algorithms (GAs) to estimate the internal parameter of FM synthesizers. Wehn[8] proposed 
automatic digital synthesizer circuits. The circuits are generated sounds comparable to a 
sampled (target) relying on a GA. This algorithm initials the population of the elements 
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(individuals) of the circuit and successively improves these elements to get a better circuit for 
generating the target sound. 

The next section demonstrates the previous works of sound synthesis. This section 
focuses on the problems that close to our approach. Section 2 shows a general review of the 
“Parisian evolution" strategy in specific the Fly algorithm. Section 3 represents the adaptation of 
the Fly algorithm into evolutionary sound synthesis. However, the Fly algorithm previously used 
for medical tomography reconstruction, robotic and digital art generator applications. This 
section follows the result. Finally, the remarkable conclusion gives in the last section. 
 
2. Evolutionary Sound Synthesis 

Sound synthesis has been active research for more than four decades. Several 
techniques for sound synthesizers like additive synthesis, subtractive synthesis, frequency 
modulation, wavetable synthesis or physical modeling[9]. Sound synthesis from the image has 
several implementations; one possible application could be expressed using an artist to draw 
sound[10]. 

Bragand et al.[10] presents a user interface to generate sound from image relying on a 
Voronoi algorithm. Another approach, Photosounder[11] the authors apply an inverse Fast 
Fourier transform (FFT) on the input image to generate sound after they examine the image as 
a magnitude spectrogram. 

Sound synthesis implementations have manipulated using an evolutionary algorithm 
(EA). In 2001, Garcia and his colleague applied genetic programming (GP) and perceptual 
distance metrics for measuring the distance between the target and produced sounds[12]. 

The researchers in [13] enhance the FM synthesis model with some changes. They rely 
on more waveforms than a sine wave, like a sawtooth wave. For synthesis, this paper uses GA 
with a fitness function that weighted sum of two spectrum-comparison metrics. The crossover 
selection parameter has shown a significant effect on the problem domain. 

Yong [14] follows Lai and his colleagues for sound synthesis using GA. However, he 
depends on the DFM synthesis model with the same type of fitness function. The 
implementation is done by MatLab to produce an output spectrum according to input (target) 
sound spectrum file. 

Other researchers [15] have been used method which is cellular automata (CA). This 
technique can be classified as one of a class of evolutionary algorithms for modeling dynamic 
systems that modify several characteristics with time. 

Our work follows the evolutionary sound paradigm. The sound synthesis solved by EA 
as an optimization problem. In specific, our proposed method relies on the Fly algorithm, which 
is a type of Cooperative Co-evolution (CoCo) strategy[16]. 

In this research, we treat sound synthesis as image reconstruction. The principles of our 
method follow the case of studying sound synthesis as a specific case of the set cover problem 
by placing a group of tiles as a set on a square shape region to convergent a colored image[17]. 
Here sound synthesis falls under the subject of generating digital mosaic by fitting mosaic tiles 
on a surface. Each tile needs setting up 9 elements (3 color components, height, width, rotation 
angle, and 3-D position), the search space is complex which has 9_N dimensions. Such a 
problem is a difficult optimization problem to solve. In this research, we propose to solve this 
problem using a type of Cooperative Co-evolution Algorithm (CCEA) called “Parisian 
evolution"[18]. The Parisian approach is differing from classical EAs. For the solution of the 
optimization problem, the EAs are searching on the best one individual as the solution. While 
the CCEA strategy looks on a set or subset of individuals of the population as a final solution. 
This means that every individual is a part of the solution, and all individuals collaborating to build 
the final solution[19]. 
 
3. Overview of the Fly Algorithm 

For solving the sound reconstruction problem, we follow the main mechanics as in 
Parisian evolution. Figure 1 shows the principles of the steady-state of the Parisian evolution 
algorithm[20]. 

This algorithm similar to classical EA, which contains the usual genetic operators of an 
EA: selection, mutation, and recombination as well as the additional ingredients two types of 
fitness, as the following: 
    - Global fitness evaluated the whole population[21] [22]. 
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    - Local fitness evaluated the single contribution of the individual to the global solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. Steady-state Cooperative Co-evolution strategy. 
 
In Section 2, we mentioned that our work depended on the Parisian (Fly) strategy. The 

individuals in this algorithm correspond to two types of structures. One corresponds to 
exceedingly simple primitives: The flies [23] represent a 3-D position only. The other structure 
contains 9-elements (see Figure 2): 

 
Figure 2. The fly data structure 

 
- The position is a vector of 3D coordinates (x, y, z), which is randomly generated 

between 0 and width -1, 0 and height 1, and 1 and -1 respectively (with width and height 

the number of pixels in the image along the x- and y-axis). An example of an image 

generated by an initial population has shown in Figure 3. 

- Colour represented by three components (r, g, b) which are red, green and blue 

respectively. The color elements are randomly generated between 0 and 1 for precise 

displaying various colors for each individual. 

- Rotation Angle is randomly produced to cover a complete angle between 0 and 360. 

- The scaling factor dominates the size of the tile over the two-dimensional coordinate 

system through the horizontal and vertical axis. 

- Local fitness scales its marginal contribution against the global solution. 

 

 
 

Figure 3. Random initial population 

 



                     ISSN: 1693-6930 

TELKOMNIKA  Vol. x, No. x,  2020:  791-79x 

104 

 
The goal of our algorithm is to optimize the 9 elements of all individuals. The proposed 

method aims to minimize the global fitness function. We depend on the sum of absolute error 
(SAE) which called Manhattan distance too [24]. This scale assesses how is a good the 
population toward the reference sound. 

 

   (       )  ∑ ∑ |   (   )     (   )|                                        (1) 

 
The SAE is compared the reference image INI with the reconstructed image pop. 
 

While assessing the performance of a single y, we use local fitness. This fitness knows 
“marginal fitness", Fm(i) (see equation 2). Our algorithm looks to improve the population 
performance by increasing the good flies against the bad flies. The SAE metrics plus the leave-
one-out cross-validation method are used to gauge the degree of compatibility of Fly i to the 
reference image. We select a fly that has a good contribution to the population and leaves out 
the bad one. 

  ( )     (    * +    )    (       )                                     (2) 

 
With RCI – {i} the image calculated with all individuals except Fly i. The sign of the value 

of Fm (i) referred to as a different interpretation: 
- sgn(Fm(i)) becomes less than 0 when the difference (error) is greater with Fly i. This means 

that the Fly i is incompatible with the optimal solution for all the rest of individuals. 
- sgn(Fm(i)) becomes greater than 0 when the difference (error) is less with Fly i. This means 

that the Fly i is converged to the optimal solution. 

- sgn(Fm(i)) becomes equal to 0 when the difference (error) is the same with Fly i. This 
means that the Fly i is not valuable nor destructive. 

As the algorithm processing going on as the bad flies decrease. For the selection stage, 
we use the Threshold selection operator [25]. If Fm(i) ≤ 0, then Fly i can be left out; else it is a 
good candidate for reproduction. For stopping criteria of the algorithm, we depend on the 
algorithm struggle to find bad flies to kill. 
 

4. Results 
In this section, we design automated sound synthesis through the Fly algorithm and 

perceptual distance metrics to measure the distance between reference (ref) and generated 
(gen) sound. The previous section shows this work relying on SAE matrices to quantify the error 
between the input and target sound. 

For fast processing, we compute the SAE with the help of a Graphics Processing Unit 
(GPU) using the OpenGL Shading Language (GLSL) (see Figure 4). 
 

 
Figure 4. Computation of the marginal fitness on GPU for two images using GLSL and OpenGL 

(in yellow and green boxes respectively) 
 

The gen sound is generated offline using a Frame Buffer Object (FBO). Sounds 
including ref and gen are stored using 2-D OpenGL textures. The next step is that the pixel-wise 
absolute error between (ref) and (gen) is computed after the texture is passed to a GLSL shader 
program. The process of summation is completed on the GPU with the help of the OpenGL 
application of the reduction operator provided by Boost Compute [26]. It efficiently supplies the 
SAE. 
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Also, our method uses only an operator of mutation for generating a good fly and 

replace with a bad fly during an iteration of the optimization technique. Crossover operator 
excluded to ensure that produced recent fly partially modified from the good previous generation 
fly. In other words, when we use crossover maybe two good flies producing a new fly in 
between are very likely to be bad.  

Our method is tested with parameters showing in Table 1 and Table 2, using 9 x 
number of flies-D search space. In the first steps of the algorithm, the flies randomly generated 
using the square tiles (see Figure 3). The mutation probability is fixed to 100 % due to the 
crossover is not suitable in our algorithm. Our practical part of the algorithm processed 
automatically. However, the image (and its size) and the number of individuals are selected by 
the user. To avoid slow down the whole process, the user balanced the number of flies with 
image size for avoiding premature convergence. 

 
Table 1. Parameters for the first testing in the algorithm 

Parameter Value 

Image size 200 x 400 
no. files  3500 
no. generations 200000 
probability of mutation (pm) 100% 
probability of crossover 0.0% 

 
 

Table 2. Parameters for the second testing in the algorithm 
Parameter Value 

Image size 200 x 400 
no. files  7500 
no. generations 200000 
probability of mutation (pm) 100% 
probability of crossover 0.0% 

 
For realistic sound synthesis, our algorithm replaces the square tiles with a stripe mask 

(see Figures 5 and 6). 
 We use a twisted wave sound editor for reading sound. The Mono sound system used 

in this research. A waveform sampled at 8000 Hz. Figure 7 shows an example of a reference 
sound which is used in this article. 

 

 
 

Figure 5. Mask using stripline 
 

 
 

Figure 6. Fitting stripe line on square tiles 
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(a) (b) 

(c) (d) 

(e) (f) (g) (h) 

 
Figure 7. Reference image 

 
The result gradually builds through the Fly algorithm iteration as we mention started 

with random stripe Flies. Then, this Fly reconstructs to reach to the target image. 
Results of Figures 8 and 9 rely on Table 1 and Table 2 respectively. Figures 8 and 9 

show how flies reconstruction gathering around the reference image, as the algorithm executes 
as the shape getting sharper. The algorithm stops either the error getting smaller between the 
reference and reconstructed image or the algorithm relying on stopping conditions. However, 
the result of Figure 9 shows the converging of the reconstructed image with the reference image 
more than the result of Figure 8. We conclude that as the number of Flies increases as the 
realistic result you got in the end. 
 

                   
 
 
 
                     
 
 

 

                        
 
 
 
 
 
 

 
 
 
 
 
 

 
                                                                                                                                                                                                                                                                                                                                               
 
 
 
 
 
 
 
Figure 8:  Results of sound reconstruction using the Fly algorithm depending on the parameters 

of Table 1. 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 

 

 
 
 
 
 
 

 

 
 
 
 
 
 

 
 

Figure 9:  Results of sound reconstruction using the Fly algorithm depending on the parameters 
of Table 2. 

 
5. Conclusion 

The proposed method is tackled the problem in the field of Evolutionary sound. The 
method addresses the problem as an image reconstructions algorithm. The algorithm depends 
on hybrid techniques that inherited from AE, scientific computing and Computer Graphics (CG). 
The AE represents the Fly algorithm for reconstructing the sound template. For generating the 
sound data, real-time CG rendering and Graphics Processing Unit (GPU) are used to compute 
the fitness function. The algorithm uses stripe tiles to create sound visual effects. 
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