

The generalized 3-connectivity of equally complete k-partite graph and its line graph

Dheyaa D. Kadhim Alaa A. Najim

Department of Mathematics, College of Science, University of Basrah

Doi 10.29072/basjs.20190307

Abstract

For a vertex set S with cardinality at least 2 in a graph G, we need a tree in order to connected the set, where this tree is usually called a Steiner tree connecting S (or an S – tree). Two Steiner trees T and T' are said to be internally disjoint if $V(T) \cap V(T') = S$ and $E(T) \cap E(T') = \phi$. Let $\kappa_G(S)$ denote the maximum number of internally disjoint Steiner trees connecting S in G. The generalized k-connectivity $\kappa_k(G)$ of a graph G which was introduced by Chartand et al. (1984) and defined as: $\kappa_k(G) = \min\{\kappa_G(S) : S \subseteq V(G) \text{ and } |S| = k\}$. In this paper we determine the generalized 3-connectivity of equally complete k-partite graph and its line graphs.

Keywords: The generalized 3- connectivity, internally disjoint trees, Steiner trees, the line graph, the complete *k*-partite graph.

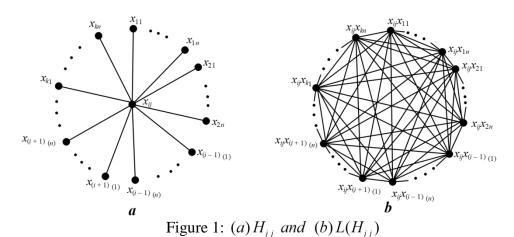
1. Introduction

The graphs in this paper are simple and undirected. For a graph G, the set of vertices, the set of edges, and the line graph of G are denoted by V(G), E(G), and E(G) respectively. The generalized connectivity of a graph G which introduced by Chartrand et al. in [1], is a natural and nice generalization of the vertex connectivity.

The connectivity of the graph G is defined as $\kappa(G) = \min\{\kappa_G(S) : S \subseteq V, |S| = 2\}$, where $\kappa_G(S)$ is the maximum number of internally disjoint paths from u to v in G ($S = \{u, v\}$) [2,3]. The subgraph T = (V', E') of the graph G = (V, E) is called Steiner tree connecting S (S-tree) if T is a tree and the set $S \subseteq V$ of at least two vertices. Two Steiner trees T and T' connecting S are said to be internally disjoint if $E(T) \cap E(T') = \phi$ and $V(T) \cap V(T') = S$. For an integer k with $2 \le k \le |V(G)|$ and $S \subseteq V(G)$ with $|S| \ge 2$, the generalized k-connectivity is define as: $\kappa_k(G) = \min\{\kappa_G(S) : S \subseteq V(G), |S| = k\}$, where $\kappa_G(S)$ is maximum number of internally disjoint Steiner trees connecting S in G. Clearly $\kappa_2(G) = \kappa(G)$. In [4] Li, Shasha, Wei Li, and Xu-

eliang Li, determined the generalized connectivity of complete bipartite graphs. Later, they dicussed the generalized connectivity of the complete equipartition 3-partite graphs in [5], the generalized 3-connectivity of graph products [3], also see[2,6,7,8,9].

Let $K_k(n)$ be an equally complete k -partite graph with partition $\{X_1, X_2, ..., X_k\}$ where $\left|X_i\right| = n$, i = 1, 2, ..., k, and let $H_{ij} = G\left[X_{ij}\right]$, i = 1, 2, ..., k, j = 1, 2, ..., n be an induced subgraph of G by the set $X_{ij} = \{x_{rs} \in X_r : r = 1, 2, ..., k, s = 1, 2, ..., n, r \neq i\} \bigcup \{x_{ij}\}$, see figure (1(a)). The line graph $L(K_k(n))$ of the equally complete k -partite graph is a graph that $V(L(K_k(n))) = E(K_k(n))$ and two vertices $u = u_1u_2$, $v = v_1v_2 \in V(L(K_k(n)))$ are adjacent if either $(u_1 = v_1)$ and $u_2v_2 \in E(K_k(n))$ or $(u_2 = v_2)$ and $u_1v_1 \in E(K_k(u))$. The line graph $L(H_{ij})$ of the star graph H_{ij} is complete graph of order (k-1)n+1 with $V(L(H_{ij})) = \{x_{ij}x_{rs} : r = 1, 2, ..., k, s = 1, 2, ..., n, r \neq i\}$ see figure (1(b)).



2. Preliminary results

Proposition 2.1 [10] Two simple graphs G and H are isomorphic if and only if there is a bijective mapping. $\theta: V(G) \to V(H)$ such that $uv \in E(G)$ if and only if $\theta(u)\theta(v) \in E(G)$.

Proposition 2.2 [9] Let G be a connected graph of order u with minimum degree δ . If there are two adjacent vertices of degree δ , then $\kappa_k(G) \le \delta - 1$ for $3 \le k \le n$. Moreover, the upper bound is sharp.

3. Main results

In this section, we determine the value of the generalized 3-connectivity of the equally complete k-partite graph and its line graph. First we introduce two lemmas that are important to the main results.

Lemma 3.1 For any two positive integers
$$k$$
 and n , $K_k(n) \cong \bigcup_{i=1}^k \left(\bigcup_{j=1}^n H_{ij}\right)$.

|E(L(G))| = |E(L(H))|, see figure(2).

Proof: Let
$$G = K_k(n)$$
 and $H = \bigcup_{i=1}^k \left(\bigcup_{j=1}^n (H_{ij})\right)$. $|V(G)| = kn$, $|V(H)| = \frac{1}{1 + n(k-1)} \sum_{i=1}^k \sum_{j=1}^n |V(H_{ij})|$
 $= \frac{1}{1 + n(k-1)} \sum_{i=1}^k \sum_{j=1}^n (1 + n(k-1)) = nk$, then $|V(G)| = |V(H)|$. $|E(G)| = \frac{1}{2} k(k-1) n^2$, $|E(H)| = \sum_{i=1}^k \sum_{j=1}^n |E(H_{ij})| = \sum_{i=1}^k \sum_{j=1}^n \left(\frac{(k-1)n}{2}\right) = \frac{1}{2} k(k-1)n^2$, then $|E(G)| = |E(H)|$.

Define $f:V(G) \to V(H)$, as $f(x) = x, \forall x \in V(G)$, then f is bijective mapping. Let $uv \in E(G)$, then there are $i,i'=1,2,...,n, i \neq i'$ such that $u \in X_i, v \in X_{i'}$, also there are j,j'=1,2,...,k such that $u = x_{ij} \in X_{ij'}, v = x_{i'j'} \in X_{i'j'}$. Clearly, there exist $uv = x_{ij}x_{i'j'} \in E(H_{ij}) \cap E(H_{i'j'}) \subseteq E(H)$ for some i,i'=1,2,...,n and j,j'=1,2,...,m. Since f(u)f(v)=uv, then $f(u)f(v)\in E(H)$ from proposition (2.1).

Lemma 3.2 For any two positive integers k and n, $L(K_k(n)) \cong \bigcup_{i=1}^k \left(\bigcup_{j=1}^n L(H_{ij})\right)$.

Proof: Let
$$L(G) = L(K_k(n))$$
 and $L(H) = \bigcup_{i=1}^k \bigcup_{j=1}^n L(H_{ij})$. $|V(L(G))| = \frac{1}{2}k(k-1)n^2$, $|V(L(H))|$

$$\sum_{i=1}^k \sum_{j=1}^n |V(L(H_{ij}))| = \sum_{i=1}^k \sum_{j=1}^n \left(\frac{(k-1)n}{2}\right) = \frac{1}{2}k(k-1)n^2$$
, then $|V(L(G))| = |V(L(H))|$. $|E(L(G))| = \frac{1}{2}$

$$\sum_{i=1}^k \sum_{j=1}^n (d_G(x_{ij}))^2 - E(G(x_{ij})) = \frac{1}{2}k(k-1)^2n^3 - \frac{1}{2}k(k-1)n^2 = \frac{1}{2}k(k-1)n^2((k-1)n-1)$$
, $|E(L(H))| = \sum_{i=1}^k \sum_{j=1}^n |E(L(X_{ij}))| = \sum_{i=1}^k \sum_{j=1}^n \left(\frac{(k-1)n((k-1)n-1)}{2}\right) = \frac{1}{2}k(k-1)n^2((k-1)n-1)$, then

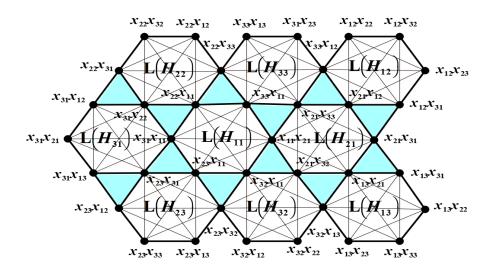


Figure 2: $L(K_3(3))$

Suppose $a \in V(L(K_k(n)))$, this mean a is an edge in $K_k(n)$, thus there are two vertices $x_{ij}, x_{i'j'}$ in $K_k(n), \forall i \neq i'$ such that $a = x_{ij}x_{i'j'}$. Then $a \in E(H_{ij}) \cap E(H_{i'j'})$ for some i, i' = 1, 2, ..., k and j, j' = 1, 2, ..., n, i.e $a \in V(L(H_{ij})) \cap V(L(H_{i'j'}))$, thus $a \in V(L(H))$.

Define $f:V(L(G)) \to V(L(H))$, as $f(x) = x, \forall x \in V(L(G))$, then f is bijective mapping. Let $ab \in E(L(G))$ such that $a = x_{ij}x_{i'j'}$, $b = x_{ij}x_{i'j''}$, $\forall i,i',i'' = 1,2,...,k$, $i \neq i',i \neq i''$ and j,j',j'' = 1,2,...,n, such that $a \in X_{ij}$, $b \in X_{i'j'}$. Clearly, there exist $ab = x_{ij}x_{i'j'}x_{ij}x_{i'j'} \in E(L(H_{ij})) \cap E(L(H_{i'j'})) \subseteq E(L(H))$. Since f(a) f(b) = ab, then $f(a) f(b) \in E(L(H))$ from pro. (2.1).

Theorem 3.3: Let $K_k(n)$ be a complete k-partite graph with two integers $k, n \ge 3$, the generalized 3-connectivity of $K_k(n)$ is $\left| \frac{(2k-3)n}{2} \right| \le \kappa_3(K_k(n)) \le n(k-1)-1$.

Proof : Let $G = K_k(n)$ and $H = \bigcup_{i=1}^k \left(\bigcup_{j=1}^n H_{i,j}\right)$, from the lemma (3.1) we have $G \cong H$. Since the degree of any vertex in H is n(k-1), then H is n(k-1)-regular graph, by the proposition (2.2) we have $\kappa_3(H) \leq n(k-1)-1$. For the completing the proof we just need to show that for any 3-subset $S = \{u, v, w\} \subseteq V(G)$, there exist at least $\left\lfloor \frac{(2k-3)n}{2} \right\rfloor$ internally disjoint Steiner trees connecting S in H. Since $H_{1j} = H_{2j} = ... = H_{ij} = K_{1,(k-1)n}$, $\forall i = 1, 2, ..., k$, j = 1, 2, ..., n, $H_{1j} \cong H_{2j} \cong ... \cong H_{ij}$, then we have three cases:

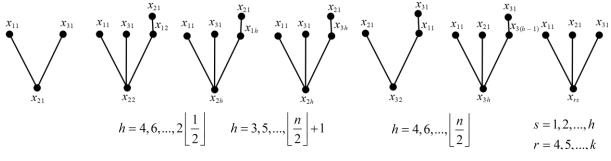
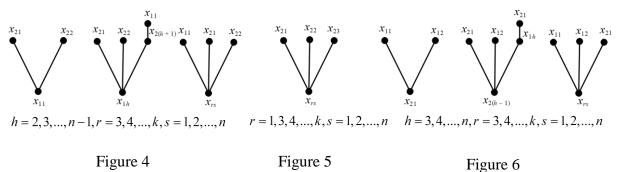


Figure 3



Case 1. If $u, v, w \in H_{ij}$, $\forall i = 1, 2, ..., k, j = 1, 2, ..., n$. Without loss of generality, we may put i = 1, j = 1, such that $u, v, w \in H_{11}$. Then there are three subcases:

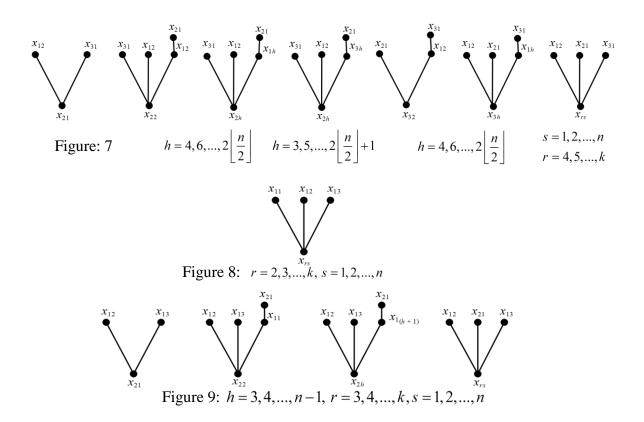
Subcase (1.1) Let $u = x_{11}, v = x_{21}, w = x_{31}$. Then the maximum number of internally disjoint Strees connecting S in H is $\left\lfloor \frac{(2k-3)n}{2} \right\rfloor$, see figure 3.

Subcase (1.2) Let $u = x_{11}$, $v = x_{21}$, $w = x_{22}$. Then the maximum number of internally disjoint S-trees connecting S in H is (n(k-1)-1), see figure 4.

Subcase (1.3) Let $u = x_{21}$, $v = x_{22}$, $w = x_{23}$. Then the maximum number of internally disjoint S-trees connecting S in H is (n(k-1)-1), see figure 5.

Case 2. If $u, v \in H_{ij}$, $w \notin H_{ij}$, $\forall i = 1, 2, ..., k$, j = 1, 2, ..., n. Again, we may assume i = 1, j = 1 such that $u, v \in H_{11}$ and $w \notin H_{11}$. Then there are two subcases:

Subcase (2.1) Let $u = x_{11}, v = x_{21}, w = x_{12}$. Then the maximum number of internally disjoint Strees connecting S in H is (n(k-1)-1), see figure 6.



Subcase (2.2) Let $u = x_{21}$, $v = x_{31}$, $w = x_{12}$. Then the maximum number of internally disjoint S-trees connecting S in H is $\left| \frac{(2k-3)n}{2} \right|$, see figure 7.

Case 3. If $u \in H_{ij}$, $v, w \notin H_{ij}$, $\forall i = 1, 2, ..., k$, j = 1, 2, ..., n. Assume i = 1, j = 1 such that $u \in H_{11}$, $v, w \notin H_{11}$. Then there are two subcases:

Subcase (3.1) Let $u = x_{11}$, $v = x_{12}$, $w = x_{13}$. Then the maximum number of internally disjoint S-trees connecting S in H is (n(k-1)), see figure 8.

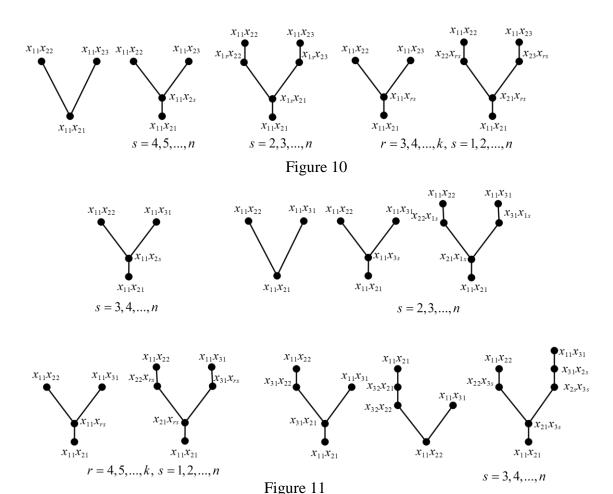
Subcase (3.2) Let $u = x_{21}$, $v = x_{12}$, $w = x_{13}$. Then the maximum number of internally disjoint S-trees connecting S in H is (n(k-1)-1), see figure 9.

For the three cases we get $\left\lfloor \frac{(2k-3)n}{2} \right\rfloor \le \kappa(S) \le (n(k-1))$, then we deduce that $\kappa_3(K_k(n)) \ge \left\lfloor \frac{(2k-3)n}{2} \right\rfloor$. Thus $\left\lfloor \frac{(2k-3)n}{2} \right\rfloor \le \kappa_3(K_k(n)) \le n(k-1)-1$.

Theorem 3.4 : Let $L(K_k(n))$ be the line graph of the complete k – partite graph with $k, n \ge 3$, then the generalized 3-connectivity of $L(K_k(n))$ is $2((k-1)n-2) \le \kappa_3(L(K_k(n))) \le 2((k-1)n-2) + 1$.

Proof: Let $R = L(K_k(n))$ and $M = \bigcup_{i=1}^k \left(\bigcup_{j=1}^n L(H_{ij})\right)$, from lemma (3.2) we have $R \cong M$. Since

the degree of any vertex in M is $\left(2((k-1)n-2)\right)+2$, then M is $\left(2((k-1)n-2)\right)+2$ -regular graph, by the proposition (2.2) we have $\kappa_3(L(M)) \leq 2((k-1)n-2)+1$. For completing the proof we just need to show that for any 3-subset $S=\{u,v,w\}\subseteq V(M)$, there exist 2((k-1)n)-2 internally disjoint Steiner trees connecting S in M. Since $L(H_{1j})=L(H_{2j})=...=L(H_{ij})=K_{(k-1)n}$, $\forall i=1,2,...,k, j=1,2,...,n$, $L(H_{1j})\cong...\cong L(H_{ij})$, then we have three cases:



Case 1. If $u, v, w \in L(H_{ij})$, $\forall i = 1, 2, ..., k$, j = 1, 2, ..., n. Without loss of generality we assume i = 1, j = 1, such that $u, v, w \in L(H_{11})$. Then there are two subcases:

Subcase 1.1 Let $u = x_{11}x_{21}$, $v = x_{11}x_{22}$, $w = x_{11}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting S in M is (2((k-1)n-2))+1, see figure 10.

Subcase 1.2 Let $u = x_{11}x_{21}$, $v = x_{11}x_{22}$, $w = x_{11}x_{31}$. Then the maximum number of internally disjoint S-trees of connecting S in M is (2((k-1)n-2))+1, see figure 11.

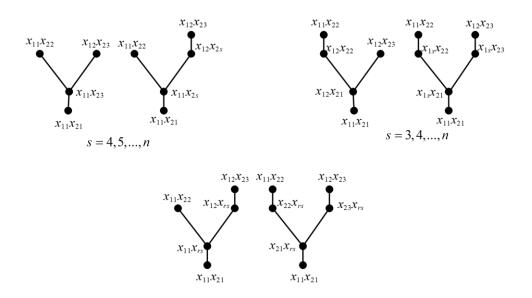


Figure 12

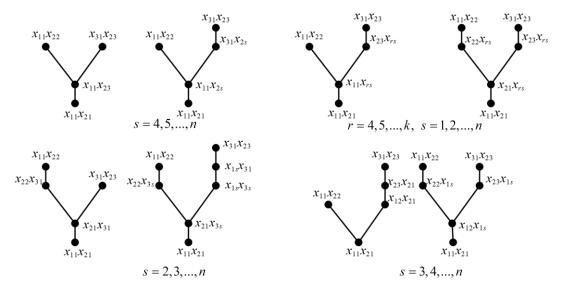


Figure 13

Case 2. If $u, v \in L(H_{ij})$, $w \notin L(H_{ij})$, $\forall i = 1, 2, ..., k$, j = 1, 2, ..., n. Again assume i = 1, j = 1, such that $u, v \in L(H_{11})$, $w \notin L(H_{11})$. Then there are four subcases:

Subcase 2.1 Let $u = x_{11}x_{21}$, $v = x_{11}x_{22}$, $w = x_{12}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting S in M is (2((k-1)n-2))+1, see figure 12.

.Subcase 2.2 Let $u = x_{11}x_{21}$, $v = x_{11}x_{22}$, $w = x_{31}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting S in M is (2((k-1)n-2))+1, see figure 13.

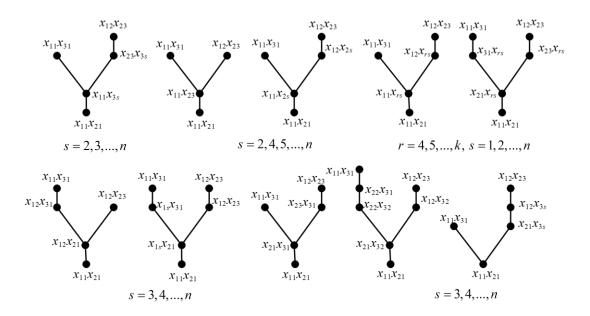


Figure 14

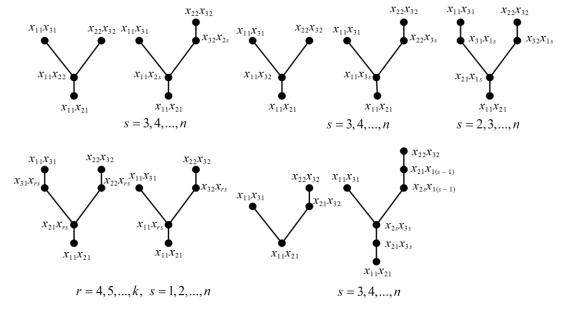


Figure 15

Subcase 2.3 Let $u = x_{11}x_{21}$, $v = x_{11}x_{22}$, $w = x_{11}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting S in M is (2((k-1)n-2))+1, see figure 14.

Subcase 2.4 Let $u = x_{11}x_{21}$, $v = x_{11}x_{31}$, $w = x_{22}x_{32}$. Then the maximum number of internally disjoint S-trees of connecting S in M is $\left(2((k-1)n-2)\right)$, see figure 15.

 $x_{11}x_{22}$

s = 2, 3, ..., n

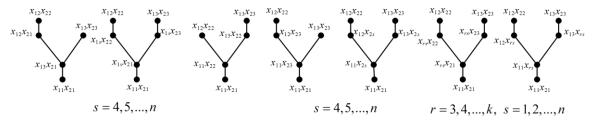


Figure 16

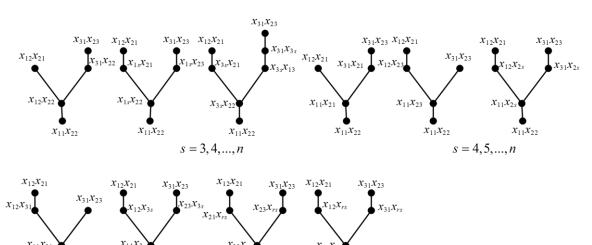


Figure 17

r = 4, 5, ..., k, s = 1, 2, ..., n

Case 3. If $u \in L(H_{ij}), v, w \notin L(H_{ij}), \forall i = 1, 2, ..., k, j = 1, 2, ..., n$. Assume i = 1, j = 1 such that $u \in L(H_{ij}), v, w \notin L(H_{ij})$. Then there are two subcases:

Subcase 3.1 Let $u = x_{11}x_{21}$, $v = x_{12}x_{22}$, $w = x_{13}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting S in M is (2((k-1)n-2))+1, see figure 16.

Subcase 3.2 Let $u = x_{11}x_{22}$, $v = x_{21}x_{12}$, $w = x_{31}x_{23}$. Then the maximum number of internally disjoint S-trees of connecting S in M is $\left(2((k-1)n-2)\right)$, see figure 17.

From the cases that we discussed we get $2((k-1)n-2) \le \kappa(S) \le 2((k-1)-2)+1$. Then $\kappa_3(L(K_k(n)) \ge 2((k-1)n-2)$. Therefore $2((k-1)n-2) \le \kappa_3(L(K_k(n)) \le 2((k-1)n-2)+1$.

References

[1] G. Chartrand, S.F. Kappor, L. Lesniak, D.R. Lick, Generalized connectivity in graphs, *Bull. Bombay Math.* Colloq. **2** (1984) 1-6.

- [2] Y. Li, R. Gu, and H. Lei, The generalized connectivity of the line graph and the total graph for the complete bipartite graph, *Applied Mathematics Computation* **347** (2019) 645-652.
- [3] H. Li, Y. Ma, W. Yang, and Y. Wang, The generalized 3-connectivity of graph products, *Applied Mathematics and Computation* **295** (2017) 77-83.
- [4] S. Li, W. Li, and X. Li, The generalized connectivity of complete bipartite graphs, *Ars Comb.* **104** (2012) 65-79.
- [5] S. Li, W. Li, and X. Li, The generalized connectivity of complete equipartition 3-partite graphs, *Bull. Malays. Math. Sci. Soc.* **37** (2014) 103-121.
- [6] L. Chen, X. Li, M. Lin, and Y Mao, A solution to a conjecture on the generalized connectivity of graphs, *Journal of Combinatorial Optimization* **33** (2017) 275-282.
- [7] S.-L. Zhao, and R.-X. Hao, The generalized connectivity of alternating graphs and (n,k)-star graphs. *Discrete Applied Mathematics* **251** (2018) 310-321.
- [8] H. Li, X. Li, and Y. Mao, On extremal graphs with at most two internally disjoint Steiner trees connecting any three vertices. *Bull.Malays. Math. Sci. Soc* **37** (2014) 3.
- [9] S. Li, X. Li, and W. Zhou, Sharp bounds for the generalized connectivity $\kappa_3(G)$. *Discrete Mathematics* **310** (2010) 2147-2163.
- [10] J.-M. Xu, Theory and Application of Graphs. *Kluwer Academic Pulbishers* **10** (2003).

أتصال 3- المعمم للبيان الجزئي - k التام المتساوي ولبيانه الخطي

ضياء داخل كاظم, علاء عامر نجم قسم الرياضيات, كلية العلوم, جامعة البصرة

المستخلص

للحصول على مجموعة رؤوس V من اصل 2 على الأقل في البيان G فإننا بحاجة الى شجرة من اجل توصيل المجموعة, حيث عادة ما تسمى هذه الشجرة بشجرة ستاينر ربط S (او شجرة S) يقال عن شجرتين من اشجار ستاينر مثل $K_G(S)$ انهما منفصلتان داخليا اذا كان $K_G(S)$ انهما منفصلتان داخليا اذا كان $K_G(S)$ اتصال $K_G(S)$ للبيان $K_G(S)$ للبيان $K_G(S)$ للبيان $K_G(S)$ للبيان $K_G(S)$ للبيان المعمم $K_G(S)$ للبيان الباحث $K_G(S)$ المعمم للبيان الجزئي $K_G(S)$ المعمم للبيان الجزئي $K_G(S)$ المعمم للبيان الجزئي $K_G(S)$ المعمم للبيان الجزئي $K_G(S)$ المعمم للبيان الخلي وبيانه الخطي.