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Abstract
For the purpose of determining the characteristics of the Cyanidin-3-O-glucoside chloride (COGC) dye, both an FT-IR spec-
trometer and a UV–Visible spect rometer were employed through the process. At a wavelength of 473 nm, a diode-pumped 
solid-state (DPSS) laser with an adjustable wavelength was used to quantify the thermally induced optical nonlinearity of 
the dye in a solvent composed of dimethylformamide. For the purpose of measuring the optical response, the Z-scan tech-
nique was utilised. The dye showed negative and large nonlinear index of refraction values, with high nonlinear absorption 
coefficients. The nonlinear index of refraction ( n

2
 ) and nonlinear absorption coefficient (β) of the COGC/PMMA film were 

measured to be 110.55 × 107 cm2/W and 136.35 × 10–3 cm/W. Thermal lens technique was used to investigate thermo-optical 
properties and n

2
 . The optical limiter capabilities of the COGC dye are being investigated as a potential use.
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Introduction

Significant nonlinear optical (NOL) features have attracted a 
lot of attention recently and hold promise for applications in 
optoelectronics and photonics, including time-reversed opti-
cal wave, photonics-based computing, light wave commu-
nication, and optical limiting [1–7]. Researchers are excited 
about exploring organic and inorganic substances for nonlin-
ear optical applications like optical limiting, optical switch-
ing, and optical communication thanks to their remarkable 
properties [8–14]. Despite their appealing NOL properties, 
the high cost and energy requirements of most inorganic 
materials limit their practical applications. To overcome the 
current constraints, researchers are constantly searching for 
new optical materials that are accessible, possess superior 
NOL capabilities, and respond to easily available low-power 
lasers. Owing to their distinct chemical characteristics, 

natural pigments such as flavonoids, anthocyanins, and 
carotenoids, are a viable and eco-friendly alternative to 
inorganic and synthetic materials. The exploration of novel 
NOL materials with sub-picosecond response times and 
large third-order NOL susceptibility values for photonics 
and optoelectronics applications remains an active research 
area. Recent studies using advanced techniques have dem-
onstrated the presence of nonlinear optical properties in 
natural dyes extracted from flower petals, leaves, bark, seed, 
and other organic substances, suggesting potential applica-
tions in various fields [15–20]. Zongo et al. revealed the 
potential of Bixa Orellana pigments for light manipulation 
by demonstrating their nonlinear optical properties through 
a spin-coating technique [21]. Bouchouit et al. employed 
four-wave mixing in a degenerate system to characterize 
the NOL properties of carotenoids extracted from spinach 
leaves. A number of researchers have reported the wide-
spread potential of various natural plants, including green 
wattle bark, Marigold flowers, Cocks Comb flowers [22], 
Curcuma longa, trigonella foenum graecum [23], egonia 
malabarica Lam, Melastoma malabathricum, Punica grana-
tum L [24, 25], grape pomace [26], chlorophyll-a extracted 
from Andrographis paniculata leaves[27], β-carotenoid 
extracted from phyllanthus niruri[28], natural tomato lyco-
pene[29], Anthocyanin extracted from blueberry[30] and 
blue pea flower [31], as readily accessible sources for the 
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extraction of natural dyes. Thiscontribution will confirm 
that the COGC dye, which is the subject of this discussion, 
has NOL characteristics caused by a high population of 
delocalized p-electrons within their anthocyanin squeleton. 
This leads to a large generation of third harmonics and the 
phenomena of two-photon absorption, such as the attractive 
intensity-dependent refractive index and optical limiting. 
This research used a Fourier transform infrared spectrometer 
and a UV–visible spectrometer to characterize a natural dye 
compound containing the anthocyanin group (Cyanidin-3-O-
glucoside chloride (COGC)). The n2 and the β of the COGC 
dye were studied with a diode-pumped solid-state (DPSS) 
laser with an output power of 18 mW at 473 m using the 
Z-scan technique, based on the sample-induced changes in a 
beam profile at the far field. The study was conducted on dif-
ferent concentrations of the COGC dye and COGC/PMMA 
film. The optical limiting effect was also studied. The appli-
cation of Thermal lens technique to study the thermo-optical 
properties and nonlinear index of refraction properties of 
anthocyanins groups is here discussed elaborately.

Experimental Procedures

Sample Preparation

In the present study, we use two types of materials: We have 
selected Cyanidin-3-O-glucoside chloride purchased from 
AdooQ Bioscience company, which has a molecular for-
mula of C21H21ClO12 and a molecular weight of 484.83 g/
mol, for the present experiment. The second material is 
dimethylformamide (DMF) solvent which was supplied by 
Sigma-Aldrich, which was of 99% purity. Figure 1 illustrates 
the chemical arrangement of the Cyanidin-3-O-glucoside 
chloride dye. The sample was prepared as follows: We sepa-
rately dissolved 0.0436 g of Cyanidin-3-O-glucoside chlo-
ride dye in DMF solvent. We used medium-fast paper filters, 
measuring 0.33 mm in thickness and 55 g/m2 in weight, 
for filtration and used a hot plate magnetic stirrer for 2 h 
to create a consistent solution. The yield concentration is 
set at 0.5 mM. We prepared the other samples for the DMF 
solution of COGC in a similar manner, with 0.1 and 0.3 mM 
concentrations.

During the process of preparing the solid films, we decided 
to use poly-methyl methacrylate (PMMA) as the host material 
for the production of dye-doped polymer film. We obtained 
this material from Aldrich, which was of 99% purity. The 
DMF solvent was used to dissolve 0.133 gm of the COGC dye. 
The concentration of the solvent was 10 mM. After stirring the 
solution that was produced at room temperature for forty-five 
minutes, we filtered it through a 0.2 μm syringe filter in order 
to get a concentration of nine millimoles. In the event that we 

were interested in determining the weight of the substance that 
we needed to melt to fulfil the requirement, we calculated [32]:

Here, Mmc is the molar concentration (Mol/L), Ww repre-
sents the total amount of dye dissolved in the solution (gm), 
Mmt is the Molecular weight (gm/mol) and Vsolv is the volume 
of DMF (ml). 3gm of PMMA polymer dissolves in 35 ml of 
DMF solvent. Using the relation [33, 34]:

Here, Ccon denotes the polymer concentration, Wpw is 
the weight of PMMA, VDMF is the volume of DMF solvent. 
COGC film was prepared by the casting method. We combined 
the COGC solution with PMMA at a volume ratio of 1:1 to 
achieve the desired result. In order to guarantee that the com-
ponents were well combined, the COGC /PMMA combination 
was mixed for a period of fifteen minutes. Using a mechanical 
pipette, a portion of the homogeneous solution was extracted, 
and then it was put onto a clean glass slide. The substrate was 
then kept in the laboratory for forty-eight hours in order to get 
a homogenous polymeric layer. The thickness of the films was 
around 5 μm.

(1)Mmc =
Ww

Mmt

×
1000

Vsolv

(2)Ccon =
Wpw

VDMF

Fig. 1   Structure of COGC dye
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Morphology of COGC Film

Film Rroughness

In order to investigate the surface topography of an COGC 
/PMMA film, atomic force microscopy (AFM) were uti-
lised. Additionally, atomic force microscopy was uti-
lised in order to conduct a roughness study. Homogene-
ity and the absence of flaws were observed in the film, 
which had dark micrometre regions that corresponded to 
COGC dye molecules and brilliant micrometre regions 
that were assigned to PMMA chains [35]. Figure 2a and 
b compressed structures and an equitable distribution of 
dye particles inside the polymer matrix were seen in the 
three-dimensional and two-dimensional AFM pictures. 
The values of the roughness parameter for the film were 
as follows: The Arithmetic mean absolute height (Ra) for 
the COGC /PMMA film is 9.333 nm, and the Skewness 
(Rsk) is 0.527 nm. Kurtosis (Rku) is a crucial parameter 
used to determine the homogenous of a surface, whether 
it is a rough surface (Rku < 3) or a spiky surface (Rku > 3). 
The Rku values for the COGC /PMMA film were 2.137 nm, 

confirming that the film has a rough surface. Addition-
ally, the root means square roughness (Rq) of the COGC /
PMMA film is 13.22 nm. The performance of materials in 
a variety of applications, such as electrical audio devices, 
sencer, electroacoustic, and biomedical devices, may be 
evaluated with the assistance of these approaches because 
to their versatility [36–39].

Profile Distribution

Surface roughness increases both diffusion and transmis-
sion, so high-precision measuring devices must have a 
characterized surface topography. Among the most impor-
tant applications of roughness features in linear and non-
linear optics are the linear electro-optical effect, optical 
filters, and optical storage systems. The method of image 
processing enables the characterization of surface mor-
phology by imitating optical operations for the purpose of 
measuring surface roughness. Two common morphologi-
cal features are shown by the surface profile distribution 
of the PMMA film. These characteristics include evenly 
scattered granular characteristics on various scales, 

Fig. 2   (a) 2D, (b) 3D ATM 
images and Gray distribution of 
COGC/PMMA film
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with uneven shapes, sizes, and separations among them. 
Through a visual analysis of Fig. 3-a and b, these traits 
may be clearly detected.

As a result, we utilised the scan along the region of 
the PMMA film in order to establish that the distribution 
was comparable throughout. On the other hand, it dem-
onstrates that the sample follows a Gaussian distribution 
that is homogenous. Furthermore, the distribution demon-
strates that the area under the curve is homogeneous, with 
a width of 2 µm (W = 2 µm) and a curved distribution 
equal to yc = y0 + A∕(W ∗ Sqrt(�∕2 ) . To our knowledge, 
the sample did not exhibit any signs of aggregation. A 
He–Ne laser beam with a power of 4 milliwatts travels 
across the film to test its optical quality. For this research, 
we acquire film that does not display any distortion or 
dispersion of the laser beam.

FT‑IR Analysis

Spectroscopy measurement via an FT-IR device. The sample 
shown in Fig. 4 were tested using an FT-IR device, specifi-
cally a Vertex 70 from a broker company. The sample spec-
tra were reported as a distribution of the samples by (ir) disc 
in potassium bromide (KBr) for a 1 mgramme experiment 
with 200 milligrammes of KBr within a wavelength range 
of 400 to 4000 cm−1 and a scan size of 1 cm−1. Functional 
groups in a sample can be identified by FT-IR spectroscopy 
analysis by matching absorption peaks to the vibrational 
modes of chemical bonds (see Fig. 4). The broad absorp-
tion band observed at 3326 cm⁻1 is characteristic of O–H 
stretching vibrations in hydroxy groups. Two absorption 
bands observed at 2936 cm⁻1 and 2890 cm⁻1 confirm the 
presence of a methylene group in the sample. The relative 
intensity ratio of these peaks corresponds to the symmet-
ric and antisymmetric stretching modes of C-H bonds in 
a methylene group, respectively. The higher wavenumber 

Fig. 3   Shows the morphology study of the COGC /PMMA film. (a) Surface morphology scan along the film's region. (b) Homogeneous Gauss-
ian thickness distribution

Fig. 4   The FT-IR spectroscopy 
of COGC dye
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(2936 cm⁻1) is attributed to the symmetric stretch due to the 
identical movement of both C-H bonds.

Furthermore, the spectrum exhibits a strong peak at 
1729 cm⁻1, characteristic of the C = O stretching vibration 
in a ketone group. Additionally, the spectrum reveals char-
acteristic peaks at 1631 cm⁻1, 1180 cm⁻1, and 1069 cm⁻1, 
corresponding to aromatic C = C stretching, C-O stretching 
in an ether group, and C-O stretching in an alkoxy group, 
respectively. The stretching vibrations found in the pigment 
of Alcea rosea and observed in the IR spectra have indicated 
the existence of chemical groups associated with the antho-
cyanin group.

UV–Vis Absorption Investigations

The absorption of the incident light leads to an electron 
transfer to the required energy states, which determines the 
linear light transmission response of the substance. This 
process makes the electronic band structure determinable 
and allows for the trajectory of electrons to distinct energy 
states [40, 41]. UV–Vis absorption spectra were acquired in 
the 200–600 nm range using a GBC Cintra 2020 UV–Vis 
spectrometer. The UV–Vis absorbance spectra of the sam-
ples at different concentrations are presented in Fig. 5. The 
maximum absorption wavelength of all samples remained 
relatively constant around 509 nm, regardless of concen-
tration. However, the peak intensity exhibited a significant 
increase with increasing concentration. The absorption spec-
tra observed in Fig. 5 confirm the π → π* transition occur-
ring within the conjugated system within the chromophore 
(light-absorbing group) of the COGC dye molecule.

The estimated energy gaps of polymer film is 2.6 eV 
while the obtained values of energy gaps were 1.84, 1.72 
and 1.63 eV for concentration of 0.1 mM, 0.3 mM and 
0.5 mM respectively. In most cases, there are gaps between 
the particles in a liquid, yet they are still in contact with 

one another. A liquid's structure is incredibly erratic. While 
orbitals on distinct atoms frequently have mismatches in 
energy or overlap, on rare occasions they coincide and mix, 
leading to a great deal of local mixing. It appears that solids 
and liquids have somewhat distinct electrical structures for 
quite different reasons. Because homogeneous and inho-
mogeneous broadening have distinct sources, the origins of 
bands non liquids and solids vary. Both scenarios result in 
bands (an energy distribution); however, the first scenario 
involves broadening over resonantly matched orbitals on dis-
tinct atoms or molecules, while the second scenario involves 
changes in the local environment as a result of randomly 
fluctuating perturbations brought on by nearby molecules 
(referred to as "the solvent"). In the first example, homoge-
nous broadening is caused by Pauli's exclusion principle and 
excessive orbital mixing. In the case of a liquid, motional 
jostling causes inhomogeneous widening. The energy in a 
liquid can be changed by bonding, but it can also be dis-
turbed by molecules with different orbitals. As a result, we 
calculated the energy gaps in Fig. 5 using the average of the 
gaps that don't change depending on the concentration.

Z‑scan Configuration

The use of the Z-scan method has become widely adopted 
for studying optical nonlinearities in various optical mate-
rials because of its sensitivity and ease of use. In this 
approach, the sample is translated along the longitudinal axis 
of a focused Gaussian beam, and the intensity of the far-field 
is recorded as the sample position changes. However, even 
when maintaining a constant input power, the sample meets 
varied incident fields at different Z-positions.

Z-scan refers to the spatial and temporal characteristics 
of the input beam as it travels through the sample during the 
experiment are important, causing significant distortions. 
Figure 6 presents the experimental setup for the z-scan 
approach. We conducted the experiment using an adjust-
able diode-pumped DPSS laser. The laser output power can 
be varied over the range of 0–100 mW emitting a Gauss-
ian beam at 473 nm with a power of 18 mW was used for 
the stimulation. The laser Gaussian beam was focused to 

Fig. 5   UV–Vis profile of COGC dye solution and polymer film Fig. 6   Schematic diagram of the Z-scan setup
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a beam waist ( �◦ ) of 22.19 μm by a positive lens of focal 
length + 5  cm and passed through the sample, either a 
0.1 cm quartz cell containing COGC dye solution or COGC: 
PMMA film. In this research, the experiment was carried out 
by moving the sample in the direction of the z-axis while it 
was being moved across the focal length point. During the 
closed-aperture z-scan (CAZS), the transmitted power out-
put was measured using an aperture with a tiny diameter that 
was located in the far field of the lens. This measurement 
was performed as a function of position z of the COGC con-
cerning the focal plane (z = 0). The measurement was made 
using a digital power meter and the photo-detector PD2. In 
addition, the photo-detector PD1 is connected to a digital 
power meter, which was utilized to measure the laser power 
that was input. In the open-aperture z-scan (OAZS), the 
aperture is completely open (S = 1), and the photo-detector 
PD2 was used to determine the strength of the whole laser 
beam that was delivered through the sample.

Results and Discussion

Nonlinear Optical Properties Study

Z-scan configuration was employed to investigate the opti-
cal nonlinearity of COGC /PMMA film and solutions at 
three different concentrations. The closed and open aper-
ture configurations were used, with an input beam intensity 
of 2.327 kW/cm2. The sample position (z) relative to the 
focal point (z = 0) varies light intensities due to the spatial 
intensity profile of the beam. The effect of both saturable 
and reverse saturable absorption processes is the predomi-
nant contribution to the nonlinear absorption coefficients, 
β, of materials. Saturable absorption causes an intensity-
dependent decrease in absorption, whereas reverse satura-
ble absorption leads to the opposite behavior. The spectral 
response of sample is described by [39–41]:

The irradiance rises as the sample gets closer to the focus, 
and as a result of nonlinear optical absorption, the transmit-
tance falls. Since the irradiance is strongest in the focus, 
nonlinear optical absorption reaches its maximum there.

where n(I) is the overall refractive index of the material. 
Alternatively, Eq. 4 may be written as [42–45]:

(3)�(I) =
�◦

1 +
I

Is

(4)n(I) = n◦ + n2I

(5)n(I) = n◦ + Δnand Δn = n2I

Here, �◦ represents the inherent material property of lin-
ear absorption, Is captures the material-dependent satura-
tion intensity, and n◦ and n2 denote the linear and nonlinear 
index of refraction of the sample, respectively. Figure 7 pre-
sents the OAZS of the COGC dye at an input intensity of 
2.327 KW/cm2. A concentration-dependent increase in peak 
transmittance is observed in the Z-scan curves, with higher 
concentrations showing a significant rise compared to lower 
concentrations (see Fig. 7). This trend suggests saturable 
absorption (SA) behavior. Saturable absorption is a nonlin-
ear optical phenomenon that manifests at high input inten-
sities. As excited state populations relax back to the low-
est energy state, the substance regains its ability to absorb 
photons. The process of electrons dropping is significantly 
faster than their stimulation when low-intensity light rays 
directed at a material medium generate a zero population 
shift between the excited levels and the ground level. The 
high-intensity photons from the incident rays activate and 
move the electrons to the excited energy level. There are few 
electrons at ground level when the incident pulse duration is 
significantly shorter than the electron fall time. The mate-
rial medium does not absorb as much of the incident rays 
as it did in the case of low-intensity light when the cross-
section of photon absorption at the stimulated level is less 
than the cross-section of photon absorption at the ground 
level. We refer to this procedure as saturation absorption.
For many materials, the absorption coefficient falls with high 
laser beam intensities. The normalized transmittance (ΔT) 
obtained from the OAZS measurement in Fig. 7 allows for 
the determination the values of nonlinear absorption coef-
ficients β, using the relation [46, 47]:

(6)� =
2
√

2ΔTope

I◦Leffec

Fig. 7   Open aperture Z-scan curve
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In Eq. 6, ΔTope signifies a single peak transmittance point 
within the OAZS curve [48, 49], and Io is the input laser 
beam intensity at the focal point, calculated as 2Ppow∕��

2
◦
 

[50, 51], where Ppow is the laser beam power and ω₀ denotes 
the beam radius at the focus. The term Leffc represents the 
effective interaction length of the sample, which is calcu-
lated as [52, 53]:

Dthic represents the physical thickness of the sample, and 
�abso is the material's optical linear absorption coefficient.

The Z-scan curves in Fig. 8, representing the nonlinear 
refraction behavior for COGC:PMMA film and solutions 
samples, all exhibit a peak followed by a valley in the trans-
mittance profile. This observation ensures a negative non-
linear index of refraction (n₂ < 0) for the material (self-defo-
cusing). The equation describing the normalized transmitted 
obtained from the pure close-aperture Z-scan measurement, 
as represented by the Z-scan data in Fig. 8, is given by [54, 
55]:

where ΔTP−V is peak and valley transmittance, STran repre-
senting the aperture linear transmittance is given by [56]:

The quantities ra and �a are the radius of the aperture 
and the radius of the beam at the aperture, respectively. The 
term ΔΘ represents the on-axis phase shift. nonlinear index 
of refraction, n2, of the sample is described by the following 
relation [57, 58]:

(7)Leffc =
1 − exp

(

−�absoDthic

)

�abso

(8)ΔTP−V = 0.406
(

1 − STran
)0.25

ΔΘ

(9)STran = exp

(

1 −
r2
�

�2
�

)

where k represents the wavenumber of the light. The remark-
able self-defocusing process in the COGC dye solution and 
COGC /PMMA film is likely attributed to thermally induced 
nonlinearity arising from the continuous-wave laser light at 
473 nm wavelength. This indicates that the absorption of 
laser light leads to a temperature increase within the sam-
ple, which consequently influences its refractive index and 
induces a negative nonlinearity. The propagation of a Gauss-
ian laser light within an attenuating medium induces a spa-
tially non-uniform temperature distribution due to localized 
energy deposition. This variation in temperature leads to 
a corresponding spatial modulation of the refractive index 
within the material [59]. The nonlinear refractive response 
of the sample can arise from various mechanisms, including 
molecular reorientation, electrostriction, electronic nonline-
arity, or thermal effects [60]. The nonlinear optical response 
of several materials, including semiconductors, polymers, 
metal nanoparticles, dyes, and liquid crystals, can be effec-
tively enhanced by photothermal effects. The primary cause 
of the medium's nonlinear optical response is the absorption 
of incoming light by materials and its subsequent conver-
sion to heat as a result of photothermal processes. When 
photons are absorbed by the substance, electromagnetic 
energy is transformed into thermal energy. By increasing 
the local temperature of the medium, this technique modifies 
its refractive index and other optical characteristics. When 
a laser beam is closely concentrated and some of its energy 
is locally absorbed by a substance, thermal nonlinearity 
results. This means that electromagnetic energy is absorbed 
and transformed into heat, raising the temperature of the 
medium locally. Because the refractive index plays a crucial 
role in nonlinear optical processes, this results in a change 
in the material's refractive index due to the heat impact (the 
Kerr effect phenomenon is initiated across the medium). 
Because the refractive index fluctuates with temperature, 
the material's optical characteristics alter and can lead to 
phenomena like thermal lensing and self-focusing. In high-
intensity laser applications, where the local heating impact 
can cause large changes in the material's optical behaviour, 
this thermal nonlinearity is particularly essential.

The peak-valley distance in a Z-scan experiment (closed-
aperture) is not necessarily larger in one configuration com-
pared to the other. However, a larger peak-valley separation 
can enhance the sensitivity for measuring the real part of 
nonlinear index of refraction and minimize the influence 
of linear absorption [61]. The calculated nonlinear optical 
parameters of the COGC /PMMA film and dye solutions are 
listed in Table 1. The values for nonlinear refractive index 
( n2 ) and nonlinear coefficient of absorption (β) of present 
samples under CW laser excitation obtained in this study are 

(10)n2 =
ΔΘ

I◦kLeffec

Fig. 8   Close aperture Z-scan curve
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in the same order (10-7 and 10-3) with the values reported 
for natural carotenoids [62], novel organic compound (E)-
N-(3-(3 (4(dimethylamino) phenyl) acryloyl) phenyl) qui-
nolone-2-carboxamide [63], Silicon Carbide Doped PVA 
Nanocomposites [64], isoniazid-vanillin hybrid [65] and 
Schiff base (E)-N'-(4-(dimethylamino) benzylidene) isoni-
cotinohydrazide[66]. Because of the various processes that 
are involved, the values that are provided in Table 1 with a 
continuous-wave (CW) laser have not been compared with 
the value that has been reported with pulsed lasers. Con-
sidering these findings, it appears that the cyanidin-3-O-
glucoside chloride may have prospective uses in the field 
of nonlinear optics.

Optical Limiting Effect

The growing trends in lasers in optoelectronics and photon-
ics necessitate stringent safety measures to preserve critical 
components and eye health from elevated light intensity. The 
emergence of adjustable and multi-spectral lasers emitting 
across the entire visible spectrum has rendered passive spec-
tral filters inadequate for comprehensive eye protection from 
laser radiation. Advanced materials or devices are crucial for 
protecting optical components and human eyes from all laser 
wavelengths, particularly against nonlinear effects. Nonlin-
ear optical materials-based optical power limiters offer a 
promising solution in this regard. These devices hold sig-
nificant potential for applications in optical sensors and eye 
protection, leveraging nonlinear refraction (self-defocusing) 
as their operating principle. Optical limiters act as inten-
sity-dependent filters, transmitting low-intensity light while 

significantly reducing the intensity of high-power beams [67, 
68]. The optical limiting effect of the polymer film and dye 
solution with different concentrations was studied by using 
a 100 mW CW-DPSS laser at 473 nm, as shown in Fig. 9. 
In this configuration of the optical limit, the laser beam was 
focus by a lens with focal length + 5 cm. The sample is kept 
at the position away from focus and propagated through a 
sample (dye concentration or COGC:PMMA film). A vari-
able-diameter aperture is placed to control the beam profile 
of the laser transmitting the sample cuvette. The photode-
tector ( Field Max II-To + OP-2 Vis Senser) attached to the 
power meter measures the matching output intensity values 
when the input laser intensity is changed methodically.

The optical limiting behavior is depicted in Fig. 10-a for 
polymer sample and dye solutions. As shown in Figure for 
each sample, the output power exhibits linear dependence 
on the applied power at low input values, with the linear 
transmittance adhering to Beer-Lambert's law. However, as 
the input power increases beyond this low-power regime, the 
transmittance deviates from linearity, marking the saturation 
of optical limiting behavior. Figure 10-b illustrates the opti-
cal clamping threshold or the point at which a high-intensity 
light beam saturates the gain in a laser medium. Once the 
laser reaches this threshold, additional input power does not 
lead to an increase in the output power, It can be seen from 
the Figure that the saturated output value decreases with 
an increasing concentration. Optical clamping threshold of 
the dye solutions are 6.6, 6.6 and 6.4 mW, respectively. The 
pattern seen in Fig. 11 makes it abundantly evident that the 
optical limiting behaviour of the COGC is caused by reverse 
saturable absorption. In the case of the COGC solutions or 
the polymer film, it is important to take note of the fact 
that the observed optical limitation is comparable to that of 
synthetic long conjugated organics with various p-electron 
conjugation bridge architectures, as reported by Guang et al. 
[69].

The normalized transmission curve for 0.1 mM, 0.3 mM, 
and 0.5 mM solutions, as well as polymer film, are depicted 
in Fig. 11. This curve relate to the sample concentration. In 
terms of quantitative differences, the optical limiting capa-
bilities are distinct. We have determined that the optical 

Table 1   Calculated NOL parameters of COGC dye

Sample n
2
× 10

−7

(cm2/W)
� × 10

−3

(cm/W)
Δn × 10

−4 ΔTope ΔΘ

0.1 mM 0.27 0.773 0.62 0.049 0.64
0.3 mM 0.31 0.893 0.72 0.054 0.72
0.5 mM 0.44 0.98 1.03 0.058 0.98
Polymer film 110.55 136.35 257.3 0.07 2.13

Fig. 9   Optical limiting setup 
configuration
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limiting thresholds, which are defined as the incident input 
power at which the transmission decreases by fifty percent, 
are 9.6, 9.1, 8.6, and 6.7 mW, respectively, after conducting 
the necessary measurements. When it comes to optical limit-
ers, materials that have lower values of limiting threshold, 
are typically thought to be more effective.

The fact that the various concentrations play a very sig-
nificant part in the optical limiting action is something that 
is quite well recognized. As the dye concentration increases, 
this leads to a decrease in transmittance and an increase in 
the optical limiting effect [70]. Therefore, the optical limit-
ing responses of the sample with a low concentration are 
often significantly less than those of the sample with a high 
dye concentration. On the other hand, the sample with a high 
concentration demonstrates substantial optical limits within 
the scope of this research. Nevertheless, to successfully 
investigate optical limiting, it is critical to carefully select 
the sample concentration in order to approach the threshold. 
All of the samples exhibit limiting behavior primarily due to 
nonlinear refraction. The nonlinearities that have arisen are 

mostly thermal. This is because the samples were pumped 
with a continuous-wave laser beam.

Thermal Lens

Two TEMoo Gaussian laser beams were utilised in the dual-
beam mode-mismatched Thermal lens (THLS) approach 
to illuminate the sample. One beam was used to excite the 
sample, resulting in a local temperature increase that created 
a lens-like element in the heated region, while the second 
beam was used to investigate the thermal effect. Measur-
ing the beam centre intensity in the far field allows one 
to monitor the temporal change in the optical path length 
of the probing beam as it passes through the constructed 
lens. This approach creates a temperature gradient in the 
sample by focusing the laser beam through a lens, and this 
creates a spatial gradient in the refractive index [71, 72]. 
As the nonlinear material in the experiment, the 0.5 mM 
Cyanidin-3-O-glucoside chloride dye sample was created in 
a glass cell with a thickness of 0.1 cm. The device is made 
up of a single transistor logic modulated laser beam with a 
diode laser 6 mW output and a beam radius of 1.5 mm at a 
wavelength of 473 nm. It also includes a positive glass lens 
with a focal length of + 50 mm, a quartz cell that is 0.1 cm 
thick and filled with a sample of 0.5 mM, Two power instru-
ments are required to quantify the input and transmitted out-
put beam powers as they pass through the cell, a Lodestar 
oscilloscope model MOS-620CH, and a frequency generator 
model EM1634. The laser's output is varied at a frequency of 
20 Hz in order to evaluate thermal lens (thermal blooming 
(THBO)). Figure 12 depicts the experimental configuration.

The fundamental method for measuring TEBO, as shown 
in Fig. 12, involves utilising a laser beam with the proper fre-
quency that is focussed using a long focal length lens and then 
allowed to grow. One Rayleigh length beyond the focal plane is 
where the sample is situated. Remember that the depth of focus 
is determined by the Rayleigh length, ZRL = 3.2mm . In the 

Fig. 10   (a) Optical limiting mechanism, (b) Concentration dependence of optical clamping threshold value of sample for a dye solution

Fig. 11   Limiting thresholds data
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case of a TEMoo, it is proportional to exp
(

−2r2∕�2
◦

)

 , where r 
is the radial distance from the beam's axis. This can be found 
using the formula ZRL = r�2

◦
∕� [73]. The heat produced in the 

absorption zone raises the local temperature, which changes 
the refractive index and creates an optical lens. Depending on 
the sign of ∂n = ∂T, the temperature coefficient of the medium's 
refractive index, the optical lens may be converging or diverg-
ing. It is a negative lens for most liquids, meaning they spread 
when heated [74]. We take a measurement by rapidly opening 
a shutter on the focal plane. The THLS develops over a few 
tenths of a second. The laser beam appears as a point on a 
plane a few meters beyond the sample during that period. The 
spot "blooms" or grows in size. It is not required to quantify 
the size of the spot; a small photodiode detector placed care-
fully in the centre of the spot generates a photocurrent that is 
proportional to the laser intensity on axis and hence inversely 
proportional to the beam area. As the region blooms, the pho-
tocurrent decreases, according to the expression [75].

I(x,t) represents the intensity that is recorded in the centre of 
the beam, I(x, t = ∞) represents the intensity that is measured 
at the detector after a sufficient amount of time has passed such 
that a steady state temperature difference is reached x = z∕zR 
and

where z is the distance between the sample and the waist of 
the beam, The thermooptic coefficient is denoted by dn∕dT  , 
while the thermal conductivity variable is denoted by Kth . 
The usual thermal time of the medium, denoted by the letter 
tc , may be stated as[76]:

(11)

I(x, t) − I(x, t = ∞)

I(x, t = ∞)
=

[

1 −
�

2
tan−1

[

2x

3+x2+(9+x2)(tc∕2t)

]]

[

1 −
�

2
tan−1

[

2x

3+x2

]]2

2

− 1

(12)� =
Ppow�absoLeffec

�K

dn

dT

(13)tc =
�2
◦

4Ddiff

Ddiff  is the thermal diffusivity may be expressed as [77]:

�dens is the sample density and CSp is the specific heat of the 
sample.

For the thermal nonlinearity and steady state case, the on-
axis change in the refractive index,Δn , can be expressed as 
[78]:

The transient signals of a Cyanidin-3-O-glucoside chloride 
dye in DMF is shown in Fig. 13 for a pumping power of 18 mW. 
The solid line corresponds to the data fitting of Eq. 11 to the 
THLS experimental data, leaving � and tc as adjustable param-
eters. Using the value of �abso = 7.1623cm−1 , tc from the fit and 
keeping in mind that � = −(Ppow�absoLeffec∕�Kth

)Θ(dn∕dT) 
(Eq.  12), n2 = (-3.799 × 10–7 cm2/W) was obtained when 
Kth = 0.185 Wm−1 K−1 and Θ (the fraction of absorbed energy) 
is converted into heat per photon. In the case of COGC non-
luminescent dye, such as the dye studied in this paper, all the 
absorbed energy is converted into heat [79, 80], so thatΘ = 1 . 
The value of the enhancement factor, E = (-dn/dT) /(1.91λk), 
was calculated for 5 mW power [42] to be 380.30 W−1. The 
computation values fortc,�,Ddiff  and dn∕dT  are given in 
Table 2.The standard error of the estimated optical properties 
was ± 2.833%. Table 2 presents the THLS data,tc,� , Ddiff  and 
dn∕dT  of several samples and our finding. Where, the Cya-
nidin-3-O-glucoside chloride sample shows good agreement 
with the other materials. The thermal lens signal is dependent 
on two factors that vary with temperature, namely dn∕dT and 
Kth, the other factors of Eq. 12 remaining constant.

Conclusion

Cyanidin-3-O-glucoside chloride dye was generated in 
two distinct forms: as a solution with varying concentra-
tions and as a thin film by doping PMMA material. The 
thin film was then coated onto glass substrates using the 

(14)Ddiff = Kth∕�densCsp

(15)Δn =
dn

dT
.
I�abso�

2
◦

4Kth

Fig. 12   THBO experimental 
setup
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Fig. 13   THLS signal for a Cyanidin-3-O-glucoside chloride dye, the red line corresponds to the data fitting. Inset shows storage oscilloscope 
THS image

Table 2   Most recently values, 
oftc,� , Ddiff  and dn∕dT  using the 
THLS spectrometry method

Sample tc θ(rad) Ddiff(cm2/sec) dn/dT (K−1) Refs

Er2O3 doped SCA 0.8 0.087 5.5 × 10–3 [81]
Eu2O3 doped LSCAS –- 0.062 4.7 × 10–3 –– [82]
TiO2: barium titanium borate 1.08 112.8 3 × 10–3 ––- [83]
Disperse Orange 3 3.8 0.84 8.7 × 10–4 –– [84]
Yb2O3: PbO–Bi2O3–Ga2O3–BaO 4.47 0.023 2 × 10–3 1.4 × 10–6 [85]
Au nanofluid 4.55 1.21 2.52 × 10–3 –– [86]
CdS-NPs prepared at 30 kGy doses 

of γ-radiation
0.014 2.013 14.9 × 10–4 –– [87]

Polymer PPV/SiO2 201 0.127 3.4 × 10–5 ـــــــ [88]
PbI2:Sb2S3:AS2S3 17.5 0.188 1.32 × 10–5 4.1 × 10–6 [89]
Nd3+ doped Ga2S3:La2:S3 2.3 0.102 2.7 × 10–3 7.6 × 10–5 [90]
Poly-vinyl chloride 5.50 0.079 1.29 × 10–3 1.14 × 10–4 [91]
TiO2 -SiO2 3.7 0.88 8.8 × 10–4 –- [92]
tellurite glass 0.57 0.059 2.9 × 10–3 11.7 × 10–6 [93]
CoF2 0.05 0.62 2.8 × 10–3 16 × 10–6 [94]
soda lime 5.5 0.079 1.29 × 10–3 –- [95]
Ga:La:S:O 1.16 0.08 2.6 × 10–3 4.6 × 10–5 [96]
poly(2-methoxy) aniline- H2SO4 2.21 0.192 1.10 × 10–3 4.3 × 10–4 [97]
Azomethine in CHCl3 31.3 0.95 3.92 × 10–5 -7.17 × 10–5 [98]
Anthocyanin solution 6.39 0.291 8.9 × 10–4 3.8 × 10–4 [98]
CdO–SiO2 15.13 0.567 7.73 × 10–5 5.01 × 10–5 [99]
COGC in DMF 31.3 0.95 6.33 × 10–5 -8.77 × 10–5 Present Work
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repeat-spin-coating process. Under the wavelength range 
of 300–900 nm, we determined the amount of absorption 
that Cyanidin-3-O-glucoside chloride exhibited. At 509 nm, 
there is a peak in the absorption that occurs regardless of the 
concentration. This particular wavelength is a component of 
the conjugated system that is contained inside the chromo-
phore (light-absorbing group) of the Cyanidin-3-O-gluco-
side chloride dye molecule, and its intensity increases as 
the concentration of dye sample goes higher. The maximum 
absorption wavelength of all of the samples remained rea-
sonably consistent around 509 nm, regardless of the quantity 
of the sample. This paper presents some advancements in the 
TL and Z-scan techniques for characterising solid-state laser 
material. The TL technique is used to determine thermal dif-
fusivity, thermal conductivity, and thermooptic coefficient. 
The TL method is employed to investigate thermal lens sig-
nals. the thermal diffusivity is measured to be 6.33 × 10–4 
cm2/sec. The dn/dT and Ddiff  values for the COGC dye were 
found to be higher than those discovered for other materi-
als, such as CdO-SiO2 and Azomethine in CHCl3. These 
values are comparable to those observed for other materials. 
Based on the findings of all of these experiments, it can be 
deduced that COGC demonstrates an outstanding nonlinear 
response and has the potential to be utilised in low-power 
nonlinear optical systems. Additionally, we demonstrated 
the application of the Z-scan method to investigate the non-
linear optical properties of COCG solution dye and polymer 
film. We could directly obtain the nonlinear absorptive and 
refractive spectra from the normalised transmission using 
a tunable CW laser source. It has been determined through 
Z-scan measurements that the COGC:PMMA film displays a 
nonlinear behaviour that is negative. Based on the measure-
ments, it has been determined that the values of nonlinear 
absorption coefficients and nonlinear index of refraction are 
around 10−3 cm/W and 10−7cm2/W, respectively. It is clear 
that dyes have a significant potential in the production of 
optical limiters due to the fact that they are environmentally 
friendly and sustainable.
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