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Abstract  

     In this paper, we explore the geometric properties and tensor components of 𝐶5 ⊕
𝐶12 − manifolds. Firstly, we established the characteristics identity of this class on 

G-structure adjoined space and found the equivalent conditions for the defining 

condition of the class in terms of Kirichenko’s tensors. Furthermore, the Cartan 

structure equations, components of the Riemannian curvature tensor, and the Ricci 

tensor are derived of this class. Finally, we introduced the appropriate conditions for 

these manifolds to be Einstein manifolds. 
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𝐶5  -حول منطويات  ⊕ 𝐶12 
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 قسم الرياضيات, كلية العلوم, جامعة البصرة, البصرة, العراق  

 

  الخلاصة 
𝐶5في هذا البحث, نستكشف الخصائص الهندسية ومركبات التنسور لمنطويات        ⊕  𝐶12  .  في البدء, انشأنا

ووجدنا الشروط المكافئة للشرط التعريفي للفئة بدلالة     𝐺المعادلة المميزة لهذه الفئة  على الفضاء المرافق للبنية 
مركبات تناسر كيريجينكا. علاوة على ذلك، معادلات كارتان التركيبية ومركبات تناسر الانحناء الريماني وريشي  

 تم اشتقاقها لهذه الفئة. اخيراً، قدمنا الشروط المناسبة التي تجعل هذه المنطويات تكون منطويات اينشتاين.
 

1. Introduction 

     One of the important studies on almost contact metric manifolds is the manifolds of a class 

and this class forms a direct sum of some irreducible classes that constituted by Chinea and 

Gonzalez [1]. The most common such classes are  𝐶5 ⊕ 𝐶6 −class, 𝐶6 ⊕ 𝐶7 −class, 𝐶2 ⊕
𝐶9 −class and 𝐶5 ⊕ 𝐶12 −class.  The classes  𝐶5 ⊕ 𝐶6  and  𝐶6 ⊕ 𝐶7  are normal. Whereas, 

both the classes  𝐶2 ⊕ 𝐶9  and  𝐶5 ⊕ 𝐶12  are not normal but they are different from each other 

in an essential part that 𝐶5 ⊕ 𝐶12 −class has a proper normal subclass while 𝐶2 ⊕ 𝐶9 −class 

has not because the normal manifolds are being of class 𝐶3 ⊕ 𝐶4 ⊕ 𝐶5 ⊕ 𝐶6 ⊕ 𝐶7 ⊕ 𝐶8. The 

manifolds of classes  𝐶5 ⊕ 𝐶6, 𝐶6 ⊕ 𝐶7  and  𝐶2 ⊕ 𝐶9  are said to be trans – Sasakian 

manifolds, quasi – Sasakian manifolds and almost cosymplectic manifolds respectively. 

Whereas, the 𝐶5 ⊕ 𝐶12 −class is not bear a famous name.   
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     Trans – Sasakian manifolds firstly discovered by Oubiña [2] in 1985. Later, Marrero [3] 

discussed the trans – Sasakian manifolds with local structure and dimension ≥ 5 and furnished 

his study by examples. Kirichenko and Rodina [4] identified the almost trans – sasakian class 

and characterized it. They also studied the trans – sasakian class of non- integrable structure 

with constant Φ- holomorphic sectional curvature. Recently, Rustanov et al. [5] studied the 

nearly trans – Sasakian manifolds from a linear extension to a special class of almost Hermitian 

manifolds. Moreover, many articles related to the article in citation [5] were done by Rustanov 

[6, 7] and Rustanov and Kharitonova [8]. On the other hand, Rahman and Rai [9] introduced a 

generalized type of submanifolds from nearly trans – Sasakian manifolds. 

 

     Quasi – Sasakian manifolds appeared first time by Blair [10] in 1967. Kirichenko and 

Rustanov [11] studied quasi – Sasakian manifolds on the G – structure adjoined space. 

Aristarkhova [12] investigated some tensors geometries of quasi – Sasakian manifolds. 

Cappelletti-Montano et al. [13] discussed the geometry of manifold with 3- contact structures 

and each structure is quasi- sasakian structure. While Di Pinto and Dileo [14] introduced anti- 

quasi- sasakian class that its intersection with quasi- sasakian class is the co- K𝑎̈hler manifold. 

The almost cosymplectic manifolds considered by many authors but the 𝐶5 ⊕ 𝐶12 −class 

introduced and studied only by Falcitelli [15] and de Candia and Falcitelli in few articles such 

as [16, 17, 18].  

 

     Therefore, our study focused on 𝐶5 ⊕ 𝐶12 −class on G – structure adjoined space and 

divided into the characterization of 𝐶5 ⊕ 𝐶12 −class in section 3, first and second groups of 

Cartan's structure equations for 𝐶5 ⊕ 𝐶12 −class in section 4, and Riemannian curvature and 

Ricci tensors of 𝐶5 ⊕ 𝐶12 −class between theory and application in section 5.          

 

2. Preliminaries 

     We use the notation 𝑀2𝑛+1, 𝑔 and 𝑑 to represent a smooth manifold with odd dimension, a 

Riemannian metric and exterior differentiation operator, respectively. Additionally, 𝑋(𝑀) 

represents the Lie algebra of vector fields over 𝑀2𝑛+1. 

Definition 2.1 [11]. Let (𝑀2𝑛+1, 𝑔) stand for a Riemannian manifold. The triple (𝜉, 𝜂, Φ) with 

the foregoing Riemannian manifold, where 𝜉 is a vector field, 𝜂 is 1-form, and Φ is (1,1)-tensor 

over 𝑋(𝑀), which satisfies the following conditions:   

    1.  Φ(𝜉) = 0,  

    2.  𝜂(𝜉) = 1,  

    3.  𝜂 ∘ Φ = 0,  

    4.  Φ2(𝑋) = −𝑋 + 𝜂(𝑋)𝜉,  

    5.  𝑔(Φ𝑋, Φ𝑌) = 𝑔(𝑋, 𝑌) − 𝜂(𝑋)𝜂(𝑌);      for all  𝑋, 𝑌 ∈ 𝑋(𝑀),  
 is called an almost contact metric (AC-) manifold.  

Example 2.2 [19]. Suppose that ℝ2𝑛+1 = {(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑛, 𝑧): 𝑥𝑖, 𝑦𝑖 , 𝑧 ∈  ℝ, for all 𝑖 =

{1, … , 𝑛}. If we take 𝜉 = 2
𝜕

𝜕𝑧
, 𝜂 =

1

2
(𝑑𝑧 −  ∑ 𝑦𝑖  𝑑𝑥𝑖) 𝑎𝑛𝑑 𝑔 = 𝜂 ⨂ 𝜂𝑛

𝑖=1 +
1

4
 ∑ ((𝑑𝑥𝑖)2 +𝑛

𝑖=1

(𝑑𝑦𝑖)
2) and Φ is given by the matrix  

(

0 𝛿𝑖𝑗 0

−𝛿𝑖𝑗 0 0

0 𝑦𝑗 0
), 

then ℝ2𝑛+1 with this structure is an AC-manifold. 

For any orthonormal basis {𝜉, 𝑒1, … , 𝑒𝑛, 𝑒1̂, … , 𝑒𝑛̂} of 𝑋(𝑀), we define an A-frame as 

(𝑝; 𝜉, 𝜀1, … , 𝜀𝑛, 𝜀1̂, … , 𝜀𝑛̂) where 𝑝 is any point in 𝑀, 𝜀𝑎 = √2𝜎(𝑒𝑎), 𝜀𝑎̂ = √2𝜎(𝑒𝑎), 𝜎 =
1

2
(id − √−1Φ);    𝜎 =

1

2
(id + √−1Φ), 𝑎 = 1, … , 𝑛 and 𝑎̂ = 𝑎 + 𝑛. The set of all such frames 
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determines a G-structure on 𝑀2𝑛+1, whose structure group is the Lie group 𝑈(𝑛)  ×  {𝑒} (see 

[20, 21, 22]).  

 These frames are characterized by the fact that the matrices of the tensors  𝑔 and Φ  

have the form [23] :  

 (𝑔𝑖𝑗) = (
1 0 0
0 𝑂 𝐼𝑛

0 𝐼𝑛 𝑂
) ;    (Φ𝑗

𝑖) = (

0 0 0

0 √−1𝐼𝑛 𝑂

0 𝑂 −√−1𝐼𝑛

) ,                                 (2.1) 

 where 𝑂 and 𝐼𝑛 are zeros matrix and 𝑛 × 𝑛 identity matrix, respectively. Also 𝑖, 𝑗 = 0,1, . . . ,2𝑛. 

Kirichenko defined six tensors represented by the following formulas [24]:  

𝐵(𝑋, 𝑌) = −
1

8
{Φ ∘ ∇Φ2𝑌(Φ)(Φ2𝑋) + Φ ∘ ∇Φ𝑌(Φ)(Φ𝑋) + Φ2 ∘ ∇Φ𝑌(Φ)(Φ2𝑋)

−Φ2 ∘ ∇Φ2𝑌(Φ)(Φ𝑋)};

𝐶(𝑋, 𝑌) = −
1

8
{−Φ ∘ ∇Φ2𝑌(Φ)(Φ2𝑋) + Φ ∘ ∇Φ𝑌(Φ)(Φ𝑋) + Φ2 ∘ ∇Φ𝑌(Φ)(Φ2𝑋)

+Φ2 ∘ ∇Φ2𝑌(Φ)(Φ𝑋)};

𝐷(𝑋) =
1

4
{2Φ ∘ ∇Φ2𝑋(Φ)𝜉 − 2Φ2 ∘ ∇Φ𝑋(Φ)𝜉 − Φ ∘ ∇𝜉(Φ)(Φ2𝑋) + Φ2 ∘ ∇𝜉(Φ)(Φ𝑋)};

𝐸(𝑋) = −
1

2
{Φ ∘ ∇Φ2𝑋(Φ)𝜉 + Φ2 ∘ ∇Φ𝑋(Φ)𝜉};

𝐹(𝑋) =
1

2
{Φ ∘ ∇Φ2𝑋(Φ)𝜉 − Φ2 ∘ ∇Φ𝑋(Φ)𝜉};

𝐺 = Φ ∘ ∇𝜉(Φ)𝜉 = ∇𝜉𝜉.

 (2.2) 

Theorem 2.3 [24]. The components of the above Kirichenko’s tensors are all equal to zero 

except for the components defined by the following formulas, respectively: 

    1.  𝐵𝑎𝑏
𝑐 = −

√−1

2
Φ𝑏̂,𝑐

𝑎 ;                        𝐵𝑎𝑏
𝑐 =

√−1

2
Φ𝑏,𝑐̂

𝑎̂ ;  

    2.  𝐶𝑎𝑏𝑐 =
√−1

2
Φ𝑏̂,𝑐̂

𝑎 ;                            𝐶𝑎𝑏𝑐 = −
√−1

2
Φ𝑏,𝑐

𝑎̂ ;  

    3.  𝐵𝑎𝑏 = √−1 (Φ0,𝑏̂
𝑎 −

1

2
Φ𝑏̂,0

𝑎 ) ;    𝐵𝑎𝑏 = −√−1 (Φ0,𝑏
𝑎̂ −

1

2
Φ𝑏,0

𝑎̂ );  

    4.  𝐵𝑎
𝑏 = √−1Φ0,𝑏

𝑎 ;                           𝐵𝑎
𝑏 = −√−1Φ0,𝑏̂

𝑎̂ ;  

    5.  𝐹𝑎𝑏 = √−1Φ𝑎̂,𝑏̂
0 ;                           𝐹𝑎𝑏 = −√−1Φ𝑎,𝑏

0 ;  

    6.  𝐶𝑎 = −√−1Φ𝑎̂,0
0 ;                          𝐶𝑎 = √−1Φ𝑎,0

0 ;  

where Φ𝑗,𝑘
𝑖  are the components of  ∇Φ  on G- structure adjoined space, 𝑎, 𝑏, 𝑐 = 1, . . . , 𝑛 and 

𝑎̂ = 𝑎 + 𝑛.  

  Now, suppose that 𝜃 is the 1-form of the Riemannian connection ∇ and {𝜔0 =
𝜔, 𝜔1, . . . , 𝜔2𝑛} is the dual A-frame on 𝑀. From [24] we have the following:  

 

𝜃𝑏̂
𝑎 =

√−1

2
Φ𝑏̂,𝑘

𝑎 𝜔𝑘;         𝜃𝑏
𝑎̂ = −

√−1

2
Φ𝑏,𝑘

𝑎̂ 𝜔𝑘;      Φ𝑏,𝑘
𝑎 = 0;

𝜃𝑎̂
0 = √−1Φ𝑎̂,𝑘

0 𝜔𝑘;        𝜃𝑎
0 = −√−1Φ𝑎,𝑘

0 𝜔𝑘;     Φ𝑏̂,𝑘
𝑎̂ = 0;

𝜃0
𝑎̂ = −√−1Φ0,𝑘

𝑎̂ 𝜔𝑘;     𝜃0
𝑎 = √−1Φ0,𝑘

𝑎 𝜔𝑘;        Φ0,𝑘
0 = 0.

                       (2.3) 

Moreover,  𝜃𝑗
𝑖 + 𝜃𝑖̂

𝑗̂
= 0 ; Φ𝑗,𝑘

𝑖 = −Φ𝑖̂,𝑘
𝑗̂

 ; 𝜃0
0 = 0, where 𝑖, 𝑗, 𝑘 = 0, 𝑎, 𝑎̂ and 𝑖̂̂ = 𝑖.  

 

3. The Characterization of 𝑪𝟓 ⊕ 𝑪𝟏𝟐-Manifolds 

    The defining condition of any AC-manifold which falls in 𝐶5 ⊕ 𝐶12 −class was defined by 

de Candia and Falcitelli [17] as follows:  
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∇𝑋(Φ)𝑌 = 𝛼{𝑔(Φ𝑋, 𝑌)𝜉 − 𝜂(𝑌)Φ𝑋} − 𝜂(𝑋){𝜂(𝑌)Φ(∇𝜉𝜉) + 𝑔(∇𝜉𝜉, Φ𝑌)𝜉},        (3.1) 

 where 𝛼 is a known smooth function related to  𝜂. 

Now, we can write Equation (3.1) on the G-structure adjoined space as follows:  

Φ𝑗,𝑘
𝑖 = 𝛼( 𝑔𝑚𝑗Φ𝑘

𝑚𝛿0
𝑖 − 𝜂𝑗Φ𝑘

𝑖 ) − 𝜂𝑘(𝜂𝑗Φ𝑙
𝑖𝐺𝑙 + Ω𝑙𝑗𝐺𝑙𝛿0

𝑖 ),                           (3.2) 

 where 𝐺𝑙  are the components of the sixth Kirichenko’s tensor 𝐺 on G- structure adjoined 

space, and Ω is a skew symmetric tensor defined by Ω(𝑋, 𝑌) = 𝑔(𝑋, Φ𝑌),    ∀  𝑋, 𝑌 ∈ 𝑋(𝑀). 

Theorem 3.1.  Let 𝑀2𝑛+1 be an AC-manifold, then the following statements are equivalent:   

    1.  𝑀  has  𝐶5 ⊕ 𝐶12 − structure.  

    2.  𝐵 = 𝐶 = 𝐷 = 𝐹 = 0; 𝐸 = −𝛼  Φ2.  

    3.  On the G-structure adjoined space, we have 

𝐵𝑎𝑏
𝑐 = 𝐵𝑎𝑏

𝑐 = 𝐶𝑎𝑏𝑐 = 𝐶𝑎𝑏𝑐 = 𝐵𝑎𝑏 = 𝐵𝑎𝑏 = 𝐹𝑎𝑏 = 𝐹𝑎𝑏 = 0 

𝐵𝑎
𝑏 = 𝐵𝑏

𝑎 = 𝛼𝛿𝑏
𝑎. 

Proof. Employing a direct proof approach, demonstrating that each statement implies the other 

two. Assume the first statement be true, from Definition 2.1 and Equation (3.1) we obtain that  

∇Φ2𝑋(Φ)𝜉 = 𝛼Φ𝑋, so Φ ∘ ∇Φ2𝑋(Φ)𝜉 = 𝛼Φ2𝑋. Also, ∇Φ𝑋(Φ)𝜉 = −𝛼Φ2𝑋, therefore Φ2 ∘
∇Φ𝑋(Φ)𝜉 = 𝛼Φ2𝑋. Hence 

𝐸(𝑋) = −
1

2
{Φ ∘ ∇Φ2𝑋(Φ)𝜉 + Φ2 ∘ ∇Φ𝑋(Φ)𝜉} = −

1

2
{𝛼Φ2𝑋 + 𝛼Φ2𝑋} = −𝛼Φ2𝑋, that 

means 𝐸 = −𝛼  Φ2, and similarly we get 𝐵 = 𝐶 = 𝐷 = 𝐹 = 0. Now suppose the second 

statement, by taking 𝑖 = 𝑎, 𝑗 = 0, 𝑘 = 𝑏 in Equation (3.2) we obtain Φ0,𝑏
𝑎 = −√−1 𝛼 𝛿𝑏

𝑎, thus 

𝐵𝑎
𝑏 = √−1 Φ0,𝑏

a = 𝛼𝛿𝑏
𝑎. And clearly for other components.                                                                                                                                                                                        

Corollary 3.2. Let 𝑀2𝑛+1 be an AC-manifold of 𝐶5 ⊕ 𝐶12 class, then  

 𝐵𝑎𝑏𝑐 = 𝐵𝑎𝑏𝑐 = 𝐶𝑎𝑏 = 𝐶𝑎𝑏 = 0, 
where 𝐵𝑎𝑏𝑐 = 𝐶𝑎[𝑏𝑐], 𝐵𝑎𝑏𝑐 = 𝐶𝑎[𝑏𝑐], 𝐶

𝑎𝑏 = 𝐹[𝑎𝑏], 𝐶𝑎𝑏 = 𝐹[𝑎𝑏].  

Proof. Since  𝐶𝑎[𝑏𝑐] =
1

2
{ 𝐶𝑎𝑏𝑐 − 𝐶𝑎𝑐𝑏 } and so for the other components, then the results 

happened from Theorem 3.1; item 3.                                                                                       ∎ 

 

Theorem 3.3. The components of  ∇Φ on G- structure adjoined space of 𝐶5 ⊕ 𝐶12 class has 

the following values:  

Φ𝑏̂,𝑘
𝑎 = Φ0,𝑐̂

𝑎 = Φ𝑏,𝑐
0 = 0;     Φ0,𝑐

𝑎 = −√−1 𝛼 𝛿𝑐
𝑎;      Φ𝑏,𝑐̂

0 = −√−1 𝛼 𝛿𝑏
𝑐 . 

 

Proof. By taking 𝑖 = 𝑎, 𝑗 = 0, 𝑘 = 𝑐 in Equation (3.2) and taking into account Equation (2.1), 

we obtain Φ0,𝑐
𝑎 = −√−1 𝛼 𝛿𝑐

𝑎, and similarly for others components.                          ∎ 

 

Theorem 3.4. Let 𝑀2𝑛+1 be an AC-manifold of 𝐶5 ⊕ 𝐶12 class, then we have:  

𝜃𝑏̂
𝑎 = 0;    𝜃𝑏

𝑎̂ = 𝜃
𝑏̂
𝑎;     𝜃0

0 = 0; 

𝜃𝑎̂
0 = −𝐶𝑎𝜔 − 𝛼𝜔𝑎;     𝜃𝑎

0 = 𝜃𝑎̂
0, 

 where 𝜔𝑎 = 𝜔𝑎 and 𝜔𝑎 = 𝜔𝑎. 

 

Proof. According to Equation (2.3), Theorem 2.3, Theorem 3.1, and taking into account 

Theorem 3.3, we have  

θ𝑏̂
a =

√−1

2
Φ𝑏̂,𝑘

𝑎 𝜔𝑘 = 0,   (from Theorem 3.3) 

         θ𝑎̂
0 = √−1Φ𝑎̂,𝑘

0 𝜔𝑘 = √−1Φ𝑎̂,0
0 𝜔0 + √−1Φ𝑎̂,𝑐

0 𝜔𝑐 + √−1Φ𝑎̂,𝑐̂
0 𝜔𝑐̂ = −𝐶𝑎𝜔 − 𝛼𝜔𝑎.      
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4. Cartan’s Structure Equations of 𝑪𝟓 ⊕ 𝑪𝟏𝟐-Manifolds  

     In this section, we calculated the structure equations of 𝐶5 ⊕ 𝐶12-manifolds. 

 

Lemma 4.1 [24, 25]. Let 𝑀2𝑛+1 be an AC-manifold, then the first family of structure equations 

given by:   

    1.  𝑑𝜔𝑎 = −𝜃𝑏
𝑎 ∧ 𝜔𝑏 + 𝐵𝑎𝑏

𝑐 𝜔𝑐 ∧ 𝜔𝑏 + 𝐵𝑎𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐 + 𝐵𝑎
𝑏 𝜔 ∧ 𝜔𝑏 + 𝐵𝑎𝑏𝜔 ∧ 𝜔𝑏 ;  

    2.  𝑑𝜔𝑎 = 𝜃𝑎
𝑏 ∧ 𝜔𝑏 + 𝐵𝑎𝑏

𝑐𝜔𝑐 ∧ 𝜔𝑏 + 𝐵𝑎𝑏𝑐 𝜔𝑏 ∧ 𝜔𝑐 + 𝐵𝑎
𝑏𝜔 ∧ 𝜔𝑏 + 𝐵𝑎𝑏 𝜔 ∧ 𝜔𝑏 ;  

    3.  𝑑𝜔 = 𝐶𝑏𝑐 𝜔𝑏 ∧ 𝜔𝑐 + 𝐶𝑏𝑐𝜔𝑏 ∧ 𝜔𝑐 + 𝐶𝑐
𝑏𝜔𝑐 ∧ 𝜔𝑏 + 𝐶𝑏 𝜔 ∧ 𝜔𝑏 + 𝐶𝑏𝜔 ∧ 𝜔𝑏,  

 where  𝐶𝑐
𝑏 = 𝐵𝑏

𝑐 − 𝐵𝑐
𝑏.  

             In the following theorem, we found the first family of structure equations of 𝐶5 ⊕ 𝐶12-

manifolds.  

 

Corollary 4.2.  Let 𝑀2𝑛+1 be an AC-manifold of 𝐶5 ⊕ 𝐶12 class, then the first group of 

structure equations given in the following forms:   

    1.  𝑑𝜔𝑎 = −𝜃𝑏
𝑎 ∧ 𝜔𝑏 + 𝛼𝜔 ∧ 𝜔𝑎 ;  

    2.  𝑑𝜔𝑎 = 𝜃𝑎
𝑏 ∧ 𝜔𝑏 + 𝛼𝜔 ∧ 𝜔𝑎 ;  

    3.  𝑑𝜔 = 𝐶𝑏𝜔 ∧ 𝜔𝑏 + 𝐶𝑏𝜔 ∧ 𝜔𝑏.  

Proof. The result directly follows from Lemma 4.1 and Theorem 3.1; item 3.                         ∎ 

 

Theorem 4.3. Let 𝑀2𝑛+1 be an AC-manifold of 𝐶5 ⊕ 𝐶12 class, then the second group of 

structure equations given in the following form:   

    1.  𝑑𝐶𝑏 = 𝐶ℎ𝜃𝑏
ℎ + 𝐶𝑏ℎ𝜔ℎ + 𝐶𝑏

ℎ𝜔ℎ + 𝐶𝑏0𝜔 ;  

    2.  𝑑𝐶𝑏 = −𝐶ℎ𝜃ℎ
𝑏 + 𝐶𝑏ℎ𝜔ℎ + 𝐶𝑏

ℎ𝜔ℎ + 𝐶𝑏0𝜔 ;  

    3.  𝑑𝜃𝑏
𝑎 = −𝜃ℎ

𝑎 ∧ 𝜃𝑏
ℎ + 𝐴𝑏ℎ

𝑎𝑑𝜔ℎ ∧ 𝜔𝑑 + 𝐴𝑏ℎ0
𝑎 𝜔ℎ ∧ 𝜔 + 𝐴𝑏

𝑎ℎ0𝜔ℎ ∧ 𝜔 ;  

    4.  𝑑𝛼 = 𝛼𝑑𝜔𝑑 + 𝛼𝑑𝜔𝑑 + 𝛼0𝜔, 

 where ℎ = 1, … , 𝑛,  𝐴[𝑏ℎ]
𝑎𝑑 = 𝐴𝑏ℎ

[𝑎𝑑]
= 𝐴[𝑏ℎ]0

𝑎 = 𝐴𝑏
[𝑎ℎ]0

= 𝐶[𝑏ℎ] = 𝐶[𝑏ℎ] = 0, 𝐶𝑏
ℎ = 𝐶ℎ

𝑏 and for 

𝑛 > 1, we have 𝛼𝑑 = 𝛼𝐶𝑑 and 𝛼𝑑 = 𝛼𝐶𝑑.  

 

Proof. Acting the exterior derivative 𝑑 on Corollary 4.2; item 3, we get:  

 0 = 𝑑𝐶𝑏 ∧ 𝜔 ∧ 𝜔𝑏 + 𝐶𝑏(𝐶𝑎𝜔 ∧ 𝜔𝑎 + 𝐶𝑎𝜔 ∧ 𝜔𝑎) ∧ 𝜔𝑏 − 𝐶𝑏𝜔 ∧ (−𝜃ℎ
𝑏 ∧ 𝜔ℎ + 𝛼𝜔 ∧ 𝜔𝑏) 

+𝑑𝐶𝑏 ∧ 𝜔 ∧ 𝜔𝑏 + 𝐶𝑏(𝐶𝑎𝜔 ∧ 𝜔𝑎 + 𝐶𝑎𝜔 ∧ 𝜔𝑎) ∧ 𝜔𝑏 − 𝐶𝑏𝜔 ∧ (𝜃𝑏
ℎ ∧ 𝜔ℎ + 𝛼𝜔 ∧ 𝜔𝑏).  

After changing some indexes of the above equation, we obtain:  

 
(𝑑𝐶𝑏 − 𝐶ℎ𝜃𝑏

ℎ) ∧ 𝜔 ∧ 𝜔𝑏 +𝐶[𝑏𝐶𝑎]𝜔 ∧ 𝜔𝑎 ∧ 𝜔𝑏 + (𝑑𝐶𝑏 + 𝐶ℎ𝜃ℎ
𝑏) ∧ 𝜔 ∧ 𝜔𝑏

+𝐶[𝑏𝐶𝑎]𝜔 ∧ 𝜔𝑎 ∧ 𝜔𝑏 = 0.
 

Since 𝐶[𝑏𝐶𝑎] =
1

2
(𝐶𝑏𝐶𝑎 − 𝐶𝑎𝐶𝑏) = 0 and 𝐶[𝑏𝐶𝑎] =

1

2
(𝐶𝑏𝐶𝑎 − 𝐶𝑎𝐶𝑏) = 0, then the above 

equation reduced to:  

 (𝑑𝐶𝑏 − 𝐶ℎ𝜃𝑏
ℎ) ∧ 𝜔 ∧ 𝜔𝑏 + (𝑑𝐶𝑏 + 𝐶ℎ𝜃ℎ

𝑏) ∧ 𝜔 ∧ 𝜔𝑏 = 0.                                   (4.1) 

 Since (𝑑𝐶𝑏 − 𝐶ℎ𝜃𝑏
ℎ) and (𝑑𝐶𝑏 + 𝐶ℎ𝜃ℎ

𝑏) are 1-forms, then they can be written by the 

following formulae:  

 
𝑑𝐶𝑏 − 𝐶ℎ𝜃𝑏

ℎ = 𝐶𝑏𝑑
ℎ 𝜃ℎ

𝑑 + 𝐶𝑏ℎ𝜔ℎ + 𝐶𝑏
ℎ𝜔ℎ + 𝐶𝑏0𝜔,

𝑑𝐶𝑏 + 𝐶ℎ𝜃ℎ
𝑏 = 𝐶ℎ

𝑏𝑑𝜃𝑑
ℎ + 𝐶𝑏ℎ𝜔ℎ + 𝐶𝑏

ℎ𝜔ℎ + 𝐶𝑏0𝜔.
 

Then by substitution the above formulae in Equation (4.1), we get 𝐶𝑏𝑑
ℎ = 𝐶ℎ

𝑏𝑑 = 𝐶[𝑏ℎ] =

𝐶[𝑏ℎ] = 0 and 𝐶𝑏
ℎ = 𝐶ℎ

𝑏. 

Now, by the same way above on Corollary 4.2; item 1, then we get:  

−(𝑑𝜃𝑏
𝑎 + 𝜃ℎ

𝑎 ∧ 𝜃𝑏
ℎ) ∧ 𝜔𝑏 + 𝛼𝐶𝑏𝜔𝑎 ∧ 𝜔 ∧ 𝜔𝑏 + 𝛼𝐶𝑏𝜔𝑎 ∧ 𝜔 ∧ 𝜔𝑏 − 𝑑𝛼 ∧ 𝜔𝑎 ∧ 𝜔 = 0.  (4.2) 
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 Since 𝑑𝜃𝑏
𝑎 + 𝜃ℎ

𝑎 ∧ 𝜃𝑏
ℎ and 𝑑𝛼 are 2-form and 1-form respectively, then they can written by the 

family of basis on G-structure adjoined space as follows: 

𝑑𝜃𝑏
𝑎 + 𝜃ℎ

𝑎 ∧ 𝜃𝑏
ℎ = 𝐴𝑏ℎ𝑓

𝑎𝑑𝑐 𝜃𝑑
ℎ ∧ 𝜃𝑐

𝑓
+ 𝐴𝑏ℎ𝑐

𝑎𝑑 𝜃𝑑
ℎ ∧ 𝜔𝑐 + 𝐴𝑏ℎ

𝑎𝑑𝑐𝜃𝑑
ℎ ∧ 𝜔𝑐 + 𝐴𝑏ℎ0

𝑎𝑑 𝜃𝑑
ℎ ∧ 𝜔 + 𝐴𝑏ℎ𝑑

𝑎 𝜔ℎ ∧ 𝜔𝑑

+𝐴𝑏ℎ
𝑎𝑑𝜔ℎ ∧ 𝜔𝑑 + 𝐴𝑏ℎ0

𝑎 𝜔ℎ ∧ 𝜔 + 𝐴𝑏
𝑎ℎ𝑑𝜔ℎ ∧ 𝜔𝑑 + 𝐴𝑏

𝑎ℎ0𝜔ℎ ∧ 𝜔.
 

𝑑𝛼 = 𝛼𝑑𝜔𝑑 + 𝛼𝑑𝜔𝑑 + 𝛼0𝜔. 
Then Equation (4.2) becomes:  

 −𝐴𝑏ℎ𝑓
𝑎𝑑𝑐 𝜃𝑑

ℎ ∧ 𝜃𝑐
𝑓

∧ 𝜔𝑏 − 𝐴[𝑏|ℎ|𝑐]
𝑎𝑑 𝜃𝑑

ℎ ∧ 𝜔𝑐 ∧ 𝜔𝑏 − 𝐴𝑏ℎ
𝑎𝑑𝑐𝜃𝑑

ℎ ∧ 𝜔𝑐 ∧ 𝜔𝑏 − 𝐴𝑏ℎ0
𝑎𝑑 𝜃𝑑

ℎ ∧ 𝜔 ∧

                𝜔𝑏 − 𝐴[𝑏ℎ𝑑]
𝑎 𝜔ℎ ∧ 𝜔𝑑 ∧ 𝜔𝑏 − 𝐴[𝑏ℎ]

𝑎𝑑 𝜔ℎ ∧ 𝜔𝑑 ∧ 𝜔𝑏 − 𝐴[𝑏ℎ]0
𝑎 𝜔ℎ ∧ 𝜔 ∧ 𝜔𝑏 − 𝐴𝑏

𝑎ℎ𝑑𝜔ℎ ∧

                𝜔𝑑 ∧ 𝜔𝑏 − 𝐴𝑏
𝑎ℎ0𝜔ℎ ∧ 𝜔 ∧ 𝜔𝑏 + 𝛼𝐶𝑏𝜔𝑎 ∧ 𝜔 ∧ 𝜔𝑏 + 𝛼𝐶𝑏𝜔𝑎 ∧ 𝜔 ∧ 𝜔𝑏 − 𝛼𝑑𝜔𝑑 ∧

                𝜔𝑎 ∧ 𝜔 − 𝛼𝑑𝜔𝑑 ∧ 𝜔𝑎 ∧ 𝜔 = 0. 

−𝐴𝑏ℎ𝑓
𝑎𝑑𝑐 𝜃𝑑

ℎ ∧ 𝜃𝑐
𝑓

∧ 𝜔𝑏 − 𝐴[𝑏|ℎ|𝑐]
𝑎𝑑 𝜃𝑑

ℎ ∧ 𝜔𝑐 ∧ 𝜔𝑏 − 𝐴𝑏ℎ
𝑎𝑑𝑐𝜃𝑑

ℎ ∧ 𝜔𝑐 ∧ 𝜔𝑏 − 𝐴𝑏ℎ0
𝑎𝑑 𝜃𝑑

ℎ ∧ 𝜔 ∧ 𝜔𝑏

− 𝐴[𝑏ℎ𝑑]
𝑎 𝜔ℎ ∧ 𝜔𝑑 ∧ 𝜔𝑏 − 𝐴[𝑏ℎ]

𝑎𝑑 𝜔ℎ ∧ 𝜔𝑑 ∧ 𝜔𝑏 − 𝐴𝑏
𝑎ℎ𝑑𝜔ℎ ∧ 𝜔𝑑 ∧ 𝜔𝑏

− 𝐴[𝑏ℎ]0
𝑎 𝜔ℎ ∧ 𝜔 ∧ 𝜔𝑏 + 𝛼𝐶[𝑏𝛿ℎ]

𝑎 𝜔ℎ ∧ 𝜔 ∧ 𝜔𝑏 + 𝛼[ℎ𝛿𝑏]
𝑎 𝜔ℎ ∧ 𝜔 ∧ 𝜔𝑏

− 𝐴𝑏
𝑎ℎ0𝜔ℎ ∧ 𝜔 ∧ 𝜔𝑏 − 𝛼𝛿𝑏

𝑎𝐶𝑏𝜔ℎ ∧ 𝜔 ∧ 𝜔𝑏 + 𝛼ℎ𝛿𝑏
𝑎𝜔ℎ ∧ 𝜔 ∧ 𝜔𝑏 = 0. 

So, we get:  

                                     

1) 𝐴𝑏ℎ𝑓
𝑎𝑑𝑐 = 𝐴[𝑏|ℎ|𝑐]

𝑎𝑑 = 𝐴𝑏ℎ
𝑎𝑑𝑐 = 0;

2) 𝐴[𝑏ℎ𝑑]
𝑎 = 𝐴[𝑏ℎ]

𝑎𝑑 = 𝐴𝑏
𝑎ℎ𝑑 = 0;

3) 𝐴𝑏ℎ0
𝑎𝑑 = 0;

4) 𝐴[𝑏ℎ]0
𝑎 − 𝛼𝐶[𝑏𝛿ℎ]

𝑎 − 𝛼[ℎ𝛿𝑏]
𝑎 = 0;

5) 𝐴𝑏
𝑎ℎ0 − 𝛼ℎ𝛿𝑏

𝑎 + 𝛼𝛿𝑏
𝑎𝐶ℎ = 0.

                                               (4.3) 

 Similarly, Corollary 4.2; item 2, give us:  

(𝑑𝜃𝑎
𝑏 − 𝜃𝑎

ℎ ∧ 𝜃ℎ
𝑏) ∧ 𝜔𝑏 + 𝛼𝐶𝑏𝜔𝑎 ∧ 𝜔 ∧ 𝜔𝑏 + 𝛼𝐶𝑏𝜔𝑎 ∧ 𝜔 ∧ 𝜔𝑏 − 𝑑𝛼 ∧ 𝜔𝑎 ∧ 𝜔 = 0.      (4.4) 

According to Equations (4.3), we get:  

𝑑𝜃𝑎
𝑏 − 𝜃𝑎

ℎ ∧ 𝜃ℎ
𝑏 = 𝐴𝑎ℎ𝑑

𝑏𝑐 𝜃𝑐
ℎ ∧ 𝜔𝑑 + 𝐴𝑎ℎ𝑐

𝑏 𝜔ℎ ∧ 𝜔𝑐 + 𝐴𝑎ℎ
𝑏𝑐 𝜔ℎ ∧ 𝜔𝑐

+𝐴𝑎ℎ0
𝑏 𝜔ℎ ∧ 𝜔 + 𝐴𝑎

𝑏ℎ0𝜔ℎ ∧ 𝜔.
 

So, Equation (4.4) turns into:  

𝐴𝑎ℎ𝑑
𝑏𝑐 𝜃𝑐

ℎ ∧ 𝜔𝑑 ∧ 𝜔𝑏 + 𝐴𝑎ℎ𝑐
𝑏 𝜔ℎ ∧ 𝜔𝑐 ∧ 𝜔𝑏 + 𝐴𝑎ℎ

[𝑏𝑐]
𝜔ℎ ∧ 𝜔𝑐 ∧ 𝜔𝑏 + 𝐴𝑎ℎ0

𝑏 𝜔ℎ ∧ 𝜔 ∧ 𝜔𝑏

+𝐴𝑎
[𝑏ℎ]0

𝜔ℎ ∧ 𝜔 ∧ 𝜔𝑏 + 𝛼𝐶𝑏𝜔𝑎 ∧ 𝜔 ∧ 𝜔𝑏 + 𝛼𝐶𝑏𝜔𝑎 ∧ 𝜔 ∧ 𝜔𝑏 − 𝛼ℎ𝜔ℎ ∧ 𝜔𝑎 ∧ 𝜔

−𝛼ℎ𝜔ℎ ∧ 𝜔𝑎 ∧ 𝜔 = 0.

 

From above, we have:  

                          

1) 𝐴𝑎ℎ𝑑
𝑏𝑐 = 𝐴𝑎ℎ𝑐

𝑏 = 𝐴𝑏ℎ
[𝑎𝑑]

= 0;

2) 𝐴𝑎ℎ0
𝑏 − 𝛿𝑎

𝑏𝛼𝐶ℎ + 𝛿𝑎
𝑏𝛼ℎ = 0;

3) 𝐴𝑎
[𝑏ℎ]0

+ 𝛼𝐶[𝑏𝛿𝑎
ℎ]

+ 𝛼[ℎ𝛿𝑎
𝑏]

= 0.

                                               (4.5) 

 Equations (4.3); item 5 and (4.5); item 3 can be rewritten respectively as follow: 

𝐴𝑏
[𝑎ℎ]0 + 𝛼𝐶[ℎ𝛿𝑏

𝑎]
− 𝛼[ℎ𝛿𝑏

𝑎]
= 0, 

𝐴𝑏
[𝑎ℎ]0 − 𝛼𝐶[ℎ𝛿𝑏

𝑎]
+ 𝛼[ℎ𝛿𝑏

𝑎]
= 0. 

Then we get 𝐴𝑏
[𝑎ℎ]0

= 0. So 𝛼𝐶[ℎ𝛿𝑏
𝑎]

− 𝛼[ℎ𝛿𝑏
𝑎]

= 0. By contracting 𝑎 and 𝑏, we obtain 

(𝑛 − 1)(𝛼 𝐶ℎ − 𝛼ℎ) = 0, and this gives the result. The same can be done for Equations (4.3); 

item 4 and (4.5); item 2.                       
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5. Riemannian Curvature and Ricci Tensors of 𝑪𝟓 ⊕ 𝑪𝟏𝟐-Manifolds 

Theorem 5.1. The Riemannian curvature tensor have the following components for the class  

𝐶5 ⊕ 𝐶12 on G-structure adjoined space given by:  

    1.  𝑅0ℎ0
𝑎 = 𝐶𝑎

ℎ − 𝐶𝑎𝐶ℎ − 𝛿ℎ
𝑎𝛼0 − 𝛿ℎ

𝑎𝛼2 ;  

    2.  𝑅0ℎ𝑑̂
𝑎 = −𝛿ℎ

𝑎𝛼𝑑 ;  

    3.  𝑅0ℎ̂0
𝑎 = 𝐶𝑎ℎ − 𝐶𝑎𝐶ℎ ;  

    4.  𝑅0ℎ𝑑
𝑎 = −2𝛿[ℎ

𝑎 𝛼𝑑] ;  

    5.  𝑅𝑏ℎ0
𝑎 = 𝐴𝑏ℎ0

𝑎 − 𝛼𝛿ℎ
𝑎𝐶𝑏 ;  

    6.  𝑅𝑏ℎ̂0
𝑎 = 𝐴𝑏

𝑎ℎ0 + 𝛼𝛿𝑏
ℎ𝐶𝑎 ;  

    7.  𝑅𝑏ℎ𝑑̂
𝑎 = 𝐴𝑏ℎ

𝑎𝑑 − 𝛼2𝛿ℎ
𝑎𝛿𝑏

𝑑 ;  

    8.  𝑅𝑏̂ℎ𝑑
𝑎 = −2𝛼2𝛿[ℎ

𝑎 𝛿𝑑]
𝑏  ;  

    9.  𝑅𝑏̂ℎ0
𝑎 = 2𝛼𝐶[𝑎𝛿ℎ

𝑏]
. 

 and all others components are zeros or we can find them by the symmetric property or 

conjugate of above components.  

Proof. From [26], any AC-manifold 𝑀2𝑛+1 satisfies the following 2nd group of Cartan's 

structure equations: 

𝑑𝜃𝑗
𝑖 + 𝜃𝑘

𝑖 ∧ 𝜃𝑗
𝑘 =

1

2
𝑅𝑗𝑘𝑙

𝑖 𝜔𝑘 ∧ 𝜔𝑙 , 

where 𝑅𝑗𝑘𝑙
𝑖  denotes to the components of Riemannian curvature tensor 𝑅 of 𝑀2𝑛+1 on G- 

structure adjoined space. 

Take  𝑘 = 0, ℎ, ℎ̂ and 𝑙 = 0, 𝑑, 𝑑̂  in the above equations, we get:  

 

𝑑𝜃𝑗
𝑖 + 𝜃0

𝑖 ∧ 𝜃𝑗
0 + 𝜃ℎ

𝑖 ∧ 𝜃𝑗
ℎ + 𝜃ℎ̂

𝑖 ∧ 𝜃𝑗
ℎ̂  =  𝑅𝑗ℎ0

𝑖 𝜔ℎ ∧ 𝜔 + 𝑅𝑗ℎ̂0
𝑖 𝜔ℎ ∧ 𝜔 +

1

2
𝑅𝑗ℎ𝑑

𝑖 𝜔ℎ ∧ 𝜔𝑑    +

                                                                         𝑅𝑗ℎ𝑑̂
𝑖 𝜔ℎ ∧ 𝜔𝑑 +

1

2
𝑅𝑗ℎ̂𝑑̂

𝑖 𝜔ℎ ∧ 𝜔𝑑 .                                   (5.1) 

 Take several cases depend on the values of 𝑖 = 0, 𝑎, 𝑎;̂  𝑗 = 0, 𝑏, 𝑏̂. From Corollary 4.2, 

Theorem 4.3 and Theorem 3.4, these cases give us the following: 

(1) If 𝑖 = 𝑗 = 0, then the Equation (5.1) give:  

 

𝑅0ℎ0
0 = 𝑅0ℎ̂0

0 = 𝑅0ℎ𝑑
0 = 𝑅0ℎ𝑑̂

0 = 𝑅0ℎ̂𝑑̂
0 = 0. 

(2) If 𝑖 = 𝑎, 𝑗 = 0, then from Equation (5.1), we get:  

𝑅0ℎ0
𝑎 = 𝐶𝑎

ℎ − 𝐶𝑎𝐶ℎ − 𝛿ℎ
𝑎𝛼0 − 𝛿ℎ

𝑎𝛼2;     𝑅0ℎ̂0
𝑎 = 𝐶𝑎ℎ − 𝐶𝑎𝐶ℎ; 

𝑅0ℎ𝑑
𝑎 = −2𝛿[ℎ

𝑎 𝛼𝑑];     𝑅0ℎ𝑑̂
𝑎 = −𝛿ℎ

𝑎𝛼𝑑;     𝑅0ℎ̂𝑑̂
𝑎 = 0. 

(3) If 𝑖 = 𝑎, 𝑗 = 𝑏, then from Equation (5.1), we get  

𝑅𝑏ℎ0
𝑎 = 𝐴𝑏ℎ0

𝑎 − 𝛼𝛿ℎ
𝑎𝐶𝑏;    𝑅𝑏ℎ̂0

𝑎 = 𝐴𝑏
𝑎ℎ0 + 𝛼𝛿𝑏

ℎ𝐶𝑎; 

𝑅𝑏ℎ𝑑̂
𝑎 = 𝐴𝑏ℎ

𝑎𝑑 − 𝛼2𝛿ℎ
𝑎𝛿𝑏

𝑑;     𝑅𝑏ℎ𝑑
𝑎 = 𝑅𝑏ℎ̂𝑑̂

𝑎 = 0. 

(4) If 𝑖 = 𝑎, 𝑗 = 𝑏̂, then according to Equation (5.1) we get 

𝑅𝑏̂ℎ𝑑
𝑎 = −2𝛼2𝛿[ℎ

𝑎 𝛿𝑑]
𝑏 ;     𝑅𝑏̂ℎ0

𝑎 = 2𝛼𝐶[𝑎𝛿ℎ
𝑏]

: 

                                                𝑅𝑏̂ℎ̂0
𝑎 = 𝑅𝑏̂ℎ𝑑̂

𝑎 = 𝑅𝑏̂ℎ̂𝑑̂
𝑎 = 0.                                                        ∎ 

 

Theorem 5.2. The components of Ricci tensor 𝑠 for the class 𝐶5 ⊕ 𝐶12  on G-structure adjoined 

space given by:   

 

    1.  𝑠00 = 2(𝐶𝑎
𝑎 − 𝐶𝑎𝐶𝑎) − 2𝑛(𝛼0 + 𝛼2);  

    2.  𝑠𝑎0 = 𝐴𝑎𝑏0
𝑏 − 𝑛𝛼𝐶𝑎 − (𝑛 − 1)𝛼𝑎;  

    3.  𝑠𝑎𝑏 = 𝐶𝑏𝑎 − 𝐶𝑏𝐶𝑎;  

    4.  𝑠𝑎̂𝑏 = 𝐶𝑎
𝑏 − 𝐶𝑎𝐶𝑏 − 𝛼0𝛿𝑏

𝑎 + 𝐴𝑐𝑏
𝑎𝑐 − 2𝑛𝛼2𝛿𝑏

𝑎;  
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 and others components we can find them by the symmetric property or conjugate of above 

components.  

 

Proof. According to Theorem 5.1 and the following relation (see [7]), we get:  

𝑠𝑖𝑗 = −𝑅𝑖𝑗𝑘
𝑘 ;   

= −𝑅𝑖𝑗0
0 − 𝑅𝑖𝑗𝑐

𝑐 − 𝑅𝑖𝑗𝑐̂
𝑐̂  ;   𝑖, 𝑗, 𝑘 = 0,1, … ,2𝑛

 

𝑠00 = −𝑅000
0 − 𝑅00𝑎

𝑎 − 𝑅00𝑎̂
𝑎̂

= 2(𝐶𝑎
𝑎 − 𝐶𝑎𝐶𝑎) − 2𝑛(𝛼0 + 𝛼2).

                

𝑠𝑎0 = −𝑅𝑎00
0 − 𝑅𝑎0𝑏

𝑏 − 𝑅𝑎0𝑏̂
𝑏̂

= 𝐴𝑎𝑏0
𝑏 − 𝑛𝛼𝐶𝑎 − (𝑛 − 1)𝛼𝑎.

                         

𝑠𝑎𝑏 = −𝑅𝑎𝑏0
0 − 𝑅𝑎𝑏𝑐

𝑐 − 𝑅𝑎𝑏𝑐̂
𝑐̂

= 𝐶𝑏𝑎 − 𝐶𝑏𝐶𝑎.

𝑠𝑎̂𝑏 = −𝑅𝑎̂𝑏0
0 − 𝑅𝑎̂𝑏𝑐

𝑐 − 𝑅𝑎̂𝑏𝑐̂
𝑐̂

= 𝐶𝑎
𝑏 − 𝐶𝑎𝐶𝑏 − 𝛼0𝛿𝑏

𝑎 + 𝐴𝑐𝑏
𝑎𝑐 − 2𝑛𝛼2𝛿𝑏

𝑎.

   

                                                                                                                                                   ∎  

Corollary 5.3. The scalar curvature of 𝐶5 ⊕ 𝐶12-manifold on G- structure adjoined space is  

 

𝜅 = 2𝐴𝑐𝑎
𝑎𝑐 + 4(𝐶𝑎 𝑎 − 𝐶𝑎 𝐶𝑎) − 2𝑛(2𝑛 + 1) 𝛼2 − 4𝑛 𝛼0. 

 

Proof. The scalar curvature 𝜅 is defined by 𝜅 = 𝑔𝑖𝑗  𝑠𝑖𝑗 , where 𝑔𝑖𝑗 are the components of the 

contravariant metric tensor [11]. 

 

       𝜅 =  𝑔𝑖𝑗  𝑠𝑖𝑗   = 𝑔00 𝑠00 + 𝑔𝑎̂𝑏 𝑠𝑎̂𝑏 + 𝑔𝑏𝑎̂ 𝑠𝑏𝑎̂ = 𝑠00 + 2 𝑠𝑎𝑎̂ 

           = 2𝐴𝑐𝑎
𝑎𝑐 + 4(𝐶𝑎 𝑎 − 𝐶𝑎  𝐶𝑎) − 4𝑛2 𝛼2 − 2𝑛 𝛼2 − 4𝑛 𝛼0.     (From Theorem 5.2)     ∎ 

 

Definition 5.4. [27] The AC-manifold is called an 𝜂-Einstein manifold if  

 

 𝑠(𝑋, 𝑌) = 𝜆  𝑔(𝑋, 𝑌) + 𝜇  𝜂(𝑋)𝜂(𝑌);     for all  𝑋, 𝑌 ∈ 𝑋(𝑀), 
where 𝜆 and 𝜇 are scalar functions. If 𝜇 = 0 then 𝑀 is called an Einstein manifold.  

 

Theorem 5.5. The manifold of 𝐶5 ⊕ 𝐶12 class is an Einstein manifold if and only if the 

following conditions hold:  

 

 2(𝐶𝑎
𝑎 − 𝐶𝑎𝐶𝑎) − 2𝑛(𝛼0 + 𝛼2) = 𝜆;    𝐶𝑏𝑎 = 𝐶𝑏𝐶𝑎;     𝐴𝑎𝑏0

𝑏 = (2𝑛 − 1)𝛼𝐶𝑎; 
 𝐴𝑐𝑎

𝑎𝑐 = (2𝑛 − 1){ 𝐶𝑎
𝑎 − 𝐶𝑎𝐶𝑎 − 𝑛𝛼0 }. 

 

Proof. Equation (2.1) and Definition 5.4, give the following:  

𝑠00 = 𝜆𝑔00 = 𝜆,      𝑠𝑎0 = 𝑠𝑎𝑏 = 0    and      𝑠𝑎̂𝑏 = 𝜆𝑔𝑎̂𝑏 = 𝜆𝛿𝑏
𝑎. 

According to the above and Theorem 5.2, we get: 

 

1)  2(𝐶𝑎
𝑎 − 𝐶𝑎𝐶𝑎) − 2𝑛(𝛼0 + 𝛼2) = 𝜆,       

2)  𝐶𝑏𝑎 = 𝐶𝑏𝐶𝑎,         𝐴𝑎𝑏0
𝑏 − 𝑛𝛼𝐶𝑎 − (𝑛 − 1)𝛼𝑎 = 0, 

3)  𝐶𝑎
𝑏 − 𝐶𝑎𝐶𝑏 − 𝛼0𝛿𝑏

𝑎 + 𝐴𝑐𝑏
𝑎𝑐 − 2𝑛𝛼2𝛿𝑏

𝑎 = 𝜆𝛿𝑏
𝑎.  

 

Since 𝛼𝑎 = 𝛼𝐶𝑎 for 𝑛 > 1, then we get 𝐴𝑎𝑏0
𝑏 = (2𝑛 − 1)𝛼𝐶𝑎  and this equality also holds if  

𝑛 = 1.   
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Now, by contracting 𝑎 and 𝑏 in equality 3) above and adding the result with equality 1), we 

get:  

𝐴𝑐𝑎
𝑎𝑐 = (2𝑛 − 1){ 𝐶𝑎

𝑎 − 𝐶𝑎𝐶𝑎 − 𝑛𝛼0 }, 
and this gives the result.                                                                                                    ∎  

 

Remark 5.6. The scalar curvature of an Einstein 𝐶5 ⊕ 𝐶12-manifolds is  𝜅 = (2𝑛 + 1)𝜆. 
 

Proof. Regarding Corollary 5.3 and Theorem 5.5, we obtain  

 

𝜅 = 2(𝐶𝑎
𝑎 − 𝐶𝑎𝐶𝑎) − 2𝑛(𝛼0 + 𝛼2) + 2{ 𝐶𝑎

𝑎 − 𝐶𝑎𝐶𝑎 − 𝑛𝛼0 + 𝐴𝑐𝑎
𝑎𝑐 − 2𝑛2𝛼2 }; 

             = 𝜆 + 2𝑛𝜆 = (2𝑛 + 1)𝜆.                                                                                   ∎  
 

Theorem 5.7. The manifold of 𝐶5 ⊕ 𝐶12 class is an 𝜂-Einstein manifold if and only if the 

following conditions hold:  

𝜆 =
1

𝑛
(𝐶𝑎

𝑎 − 𝐶𝑎𝐶𝑎+𝐴𝑐𝑎
𝑎𝑐) − 𝛼0 − 2𝑛𝛼2; 

 𝜇 = 2(𝐶𝑎
𝑎 − 𝐶𝑎𝐶𝑎) −

1

𝑛
(𝐶𝑎

𝑎 − 𝐶𝑎𝐶𝑎+𝐴𝑐𝑎
𝑎𝑐) + (1 − 2𝑛) 𝛼0; 

    𝐶𝑏𝑎 = 𝐶𝑏𝐶𝑎;    𝐴𝑎𝑏𝑜
𝑏 = (2𝑛 − 1)𝛼𝐶𝑎. 

 

Proof. Definition 5.4 implies that  𝑠00 = 𝜆 + 𝜇 ;   𝑠𝑎0 = 𝑠𝑎𝑏 = 0  and  𝑠𝑎̂b = 𝜆𝛿𝑏
𝑎. Thus  

1) 2(𝐶𝑎
𝑎 − 𝐶𝑎𝐶𝑎) − 2𝑛(𝛼0 + 𝛼2) = 𝜆 + 𝜇, 

2) 𝐶𝑎
𝑏 − 𝐶𝑎𝐶𝑏 − 𝛼0𝛿𝑏

𝑎 + 𝐴𝑐𝑏
𝑎𝑐 − 2𝑛𝛼2𝛿𝑏

𝑎 = 𝜆𝛿𝑏
𝑎. 

The contracting of Equation 2) gives the following: 

3) 𝐶𝑎
𝑎 − 𝐶𝑎𝐶𝑎 − 𝑛𝛼0 + 𝐴𝑐𝑎

𝑎𝑐 − 2𝑛2𝛼2 = 𝑛 𝜆. 
So, solving Equations (1) and (3) with respect to  𝜇  and  𝜆  given the values of them. The other 

results similar to the way of the proof of Theorem 5.5.                    ∎ 

 

Remark 5.8. If 𝜆 and 𝜇 are constants in Theorem 5.7, then  𝑑𝐴𝑐𝑎
𝑎𝑐 = 2𝑛(2𝑛 − 1)𝛼 𝑑𝛼. 

 

Proof.  Suppose that 𝜆 and 𝜇 are constants in Theorem 5.7, then the exterior differentiation for 

the values of  𝜇  and  𝜆  in the above theorem implies that respectively:  
2𝑛 − 1

𝑛
𝑑(𝐶    𝑎

𝑎 − 𝐶𝑎𝐶𝑎) − (2𝑛 − 1)𝑑𝛼0 −
1

𝑛
𝑑𝐴𝑐𝛼

𝑎𝑐 = 0 ; 

1

𝑛
𝑑(𝐶    𝑎

𝑎 − 𝐶𝑎𝐶𝛼) +
1

𝑛
𝑑𝐴𝑐𝛼

𝛼𝑐 − 𝑑𝛼0 − 4𝑛𝛼 𝑑𝛼 = 0 . 

So, the solution of above two equations with respect to  𝑑𝐴𝑐𝛼
𝑎𝑐   gives the result. 
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