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Abstract

In this paper, we explore the geometric properties and tensor components of Cs @
C;, — manifolds. Firstly, we established the characteristics identity of this class on
G-structure adjoined space and found the equivalent conditions for the defining
condition of the class in terms of Kirichenko’s tensors. Furthermore, the Cartan
structure equations, components of the Riemannian curvature tensor, and the Ricci
tensor are derived of this class. Finally, we introduced the appropriate conditions for
these manifolds to be Einstein manifolds.
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1. Introduction

One of the important studies on almost contact metric manifolds is the manifolds of a class
and this class forms a direct sum of some irreducible classes that constituted by Chinea and
Gonzalez [1]. The most common such classes are Cs @ Cg —class, Cg @ C, —class, C, P
Cy —class and C5 @ C;, —class. The classes Cs @ C; and Cg @ C; are normal. Whereas,
both the classes C, @ Cy and Cs @ C;, are not normal but they are different from each other
in an essential part that Cs @ C;, —class has a proper normal subclass while C, @ Cy —class
has not because the normal manifolds are being of class C3 @ C, D Cs D C¢ D €, D Cg. The
manifolds of classes Cs @ Cq, Cs P C;, and C, @ Cy are said to be trans — Sasakian
manifolds, quasi — Sasakian manifolds and almost cosymplectic manifolds respectively.
Whereas, the Cs @ C;, —class is not bear a famous name.
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Trans — Sasakian manifolds firstly discovered by Oubifia [2] in 1985. Later, Marrero [3]
discussed the trans — Sasakian manifolds with local structure and dimension = 5 and furnished
his study by examples. Kirichenko and Rodina [4] identified the almost trans — sasakian class
and characterized it. They also studied the trans — sasakian class of non- integrable structure
with constant ®- holomorphic sectional curvature. Recently, Rustanov et al. [5] studied the
nearly trans — Sasakian manifolds from a linear extension to a special class of almost Hermitian
manifolds. Moreover, many articles related to the article in citation [5] were done by Rustanov
[6, 7] and Rustanov and Kharitonova [8]. On the other hand, Rahman and Rai [9] introduced a
generalized type of submanifolds from nearly trans — Sasakian manifolds.

Quasi — Sasakian manifolds appeared first time by Blair [10] in 1967. Kirichenko and
Rustanov [11] studied quasi — Sasakian manifolds on the G — structure adjoined space.
Aristarkhova [12] investigated some tensors geometries of quasi — Sasakian manifolds.
Cappelletti-Montano et al. [13] discussed the geometry of manifold with 3- contact structures
and each structure is quasi- sasakian structure. While Di Pinto and Dileo [14] introduced anti-
quasi- sasakian class that its intersection with quasi- sasakian class is the co- Kédhler manifold.
The almost cosymplectic manifolds considered by many authors but the Cs @ C;, —class
introduced and studied only by Falcitelli [15] and de Candia and Falcitelli in few articles such
as [16, 17, 18].

Therefore, our study focused on Cs @ C;, —class on G — structure adjoined space and
divided into the characterization of Cs @ C;, —class in section 3, first and second groups of
Cartan's structure equations for Cs @ C;, —class in section 4, and Riemannian curvature and
Ricci tensors of Cs @ C;, —class between theory and application in section 5.

2. Preliminaries

We use the notation M2"*1 g and d to represent a smooth manifold with odd dimension, a
Riemannian metric and exterior differentiation operator, respectively. Additionally, X (M)
represents the Lie algebra of vector fields over M2™+1,
Definition 2.1 [11]. Let (M2"*1, g) stand for a Riemannian manifold. The triple (&¢,7, ®) with
the foregoing Riemannian manifold, where ¢ is a vector field, n is 1-form, and & is (1,1)-tensor
over X (M), which satisfies the following conditions:

1. ®($) =0,
2.1(6) =1,
3.n0od =0,

4, ®%2(X) = —X + n(X)§,

5. g(®X,dY) = g(X,Y) —n(X)n(Y); forall X,Y € X(M),
is called an almost contact metric (AC-) manifold.
Example 2.2 [19]. Suppose that R>™! = {(x, ..., Xp, V1, o) Y, 2): X1, Vi, Z € R, foralli =
{1, ..,n}. If we take & = 2%,77 = %(dz —Yriyidx)and g=n1Q®n +i Y ((dx)? +
(dy;)?) and @ is given by the matrix

0 & 0
—5; 0 0]

then R?"*1 with this structure is an AC-manifold.
For any orthonormal basis {¢,eq,...,e,, €5, ...,e5} of X(M), we define an A-frame as

(D; &, €1, on) €ny €1, o, €5) Where p is any point in M, &, = V20(e,), g5 = V25(ey), 0 =
%(id —V=1®); o= %(id ++V—=1®),a =1, ..,nand @ = a + n. The set of all such frames
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determines a G-structure on M?™*1, whose structure group is the Lie group U(n) X {e} (see
[20, 21, 22]).

These frames are characterized by the fact that the matrices of the tensors g and @
have the form [23] :

1 0 0 0 0 0
(9:j) = <0 0 1n>; (@))=(0 V-1, 0 , 2.1
0 I, O 0 0 —/=1I,
where O and I, are zeros matrix and n X n identity matrix, respectively. Alsoi,j = 0,1,...,2n.
Kirichenko defined six tensors represented by the following formulas [24]:

BILY) = (00 Vory (D)(@2X) + D o Vo (D)(@X) + B2 o Vg (9)(@2X)
B2 0 Uy (B) (PX));

CX,Y) = —%{—CD 0 Vp2y (P) (P2X) + @ 0 Vg (P) (PX) + D2 0 Vgpy (D) (P2X)
+®0% 0 Vgoy (P)(PX)};
D(X) = %{ZCD o Vg (D) — 202 0 Vg (P)E — @ 0 Ve (D) (P2X) + D2 0 Ve (@) (PX)};
1
E(X) = —E{CD o Vapzy(P)E + @2 o Voy (P)E};
1
F(X) = E{CD o Vapzy (P)E — D2 o Vgy(P)E};
G = q)OVg(q))f: fo

Theorem 2.3 [24]. The components of the above Kirichenko’s tensors are all equal to zero
except for the components defined by the following formulas, respectively:

e VT oa
1. Babc = 2 CDZC; Bay© = Tq)g,é;
2. C%c = \/z_q)gc’ Cabe = _gcbgl,c;

ab — /21 (? 1na ). = =1 d 15a ).
4' ab = F¢gb; \/_(Doby
5. Fab—\/ Cbab, Fop = —V=1dg ,;
6. = —NV— qDaO' C = vV q)a()’

where CD]-'k are the components of V@ on G- structure adjoined space, a,b,c = 1,...,n and
a=a+n.
Now, suppose that 6 is the 1-form of the Riemannian connection V and {w° =

w,wl,..., w*"} is the dual A-frame on M. From [24] we have the following:
of =20t o 0f = -Tlofok  of, =0;
63 = \/_Cbgkw 60 = —V/-1®2 , w*; CDCE =0; (2.3)
gz V- 1¢0kwk 0y =V— cDOkw cI’Ok =
Moreover, 9]-‘ + 9{ =0; d)}‘ = —CD{k ; 60 = 0, where i,j,k = 0,a,d and =i

3. The Characterization of C5 @ C{,-Manifolds
The defining condition of any AC-manifold which falls in C5 @ C;, —class was defined by
de Candia and Falcitelli [17] as follows:
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Vx (@)Y = a{g(®X,Y)§ - n(NPX} - n(X){n(NP(Vel) + g(Ves, @Y)EL,  (G.1)
where «a is a known smooth function related to 7.
Now, we can write Equation (3.1) on the G-structure adjoined space as follows:

i = a(gmj®PRSs — 1 @) — N (PG + QG 8), (3.2)
where G'!are the components of the sixth Kirichenko’s tensor G on G- structure adjoined
space, and () is a skew symmetric tensor defined by Q(X,Y) = g(X, ®Y), V X,Y € X(M).
Theorem 3.1. Let M?"*1 be an AC-manifold, then the following statements are equivalent:

1. M has Cs @ C,, — structure.
2.B=C=D=F=0,E =—a ®2
3. On the G-structure adjoined space, we have
Babc = Bgp© = cobe = Capc = B = Bap = F = Fop =0
Bab = Bba = af(?g
Proof. Employing a direct proof approach, demonstrating that each statement implies the other
two. Assume the first statement be true, from Definition 2.1 and Equation (3.1) we obtain that
Vp2x (P)E = adX, s0 @ o Vg2 (D)€ = ad?X. Also, Vex (P)é = —ad?X, therefore ®? o
Vox(®)E = a®?X. Hence
EX) = —%{q) 0 Vipzy (D)E + D2 0 Vo (P)E} = —%{a(bzX + ad2X} = —ad2X, that
means E = —a ®2, and similarly we get B =C =D = F = 0. Now suppose the second
statement, by taking i = a, j = 0,k = b in Equation (3.2) we obtain ®%, = —vV—1 a 82, thus
B%, =vV—1®§, = adf. And clearly for other components.
Corollary 3.2. Let M2"*1 be an AC-manifold of Cs @ C;, class, then
B¢ = Bapc = c? = Cap =0,

where Babc = Ca[bc], Babc = Ca[bc]a Cab = F[ab], Cab = F[ab]'
Proof. Since C*Lb¢] = %{ C¢ — Cacb } and so for the other components, then the results

happened from Theorem 3.1; item 3. ]

Theorem 3.3. The components of V& on G- structure adjoined space of Cs @ C;, class has
the following values:

OF =D, =Dp.=0; Pf.=—-1adl &p,=—-1ad;.

Proof. By taking i = a,j = 0,k = c in Equation (3.2) and taking into account Equation (2.1),
we obtain ®F . = —vV—1 a §¢, and similarly for others components. [ ]

Theorem 3.4. Let M2"*1 be an AC-manifold of Cs @ C;, class, then we have:
g=0; 62=0% 0§=0;
09 = —C*w —aw®; 67 =62,

where w, = w® and w? = w,.

Proof. According to Equation (2.3), Theorem 2.3, Theorem 3.1, and taking into account

Theorem 3.3, we have
a_V-1l.a | _
05 = T‘I’B,kw = 0, (from Theorem 3.3)

60 = V=T ook = V=103 y0 + V=T, + V=TI s0¢ = —C% — aw®.
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4. Cartan’s Structure Equations of C5 @ C1,-Manifolds
In this section, we calculated the structure equations of Cs @ C;,-manifolds.

Lemma 4.1 [24, 25]. Let M?™*1 be an AC-manifold, then the first family of structure equations
given by:

1. dw® = -0 Aw? + B*®, w° A wp, + B wy A w, + B, w Aw? + BPw Awy, ;

2. dwg =62 Awy + By,‘w, A w? + Bgpe 0P A w4+ B2w Awy, 4+ By w A w?;

3. dw = Cpe w? A€ + C*wp A w, + CPw Awp + Cp w A w? + CPw A wy,
where C? = B, —B.P.

In the following theorem, we found the first family of structure equations of Cs @ Cy,-

manifolds.

Corollary 4.2. Let M?"*1 be an AC-manifold of Cs @ C;, class, then the first group of
structure equations given in the following forms:

1. dw® = =0 A w? + aw A w?;

2. dwg =02 Nwy + aw Aw, ;

3. dw = Cow A w? + CPw A wy.
Proof. The result directly follows from Lemma 4.1 and Theorem 3.1; item 3. ]

Theorem 4.3. Let M?"*1 be an AC-manifold of Cs @ C;, class, then the second group of
structure equations given in the following form:

1. dCp = ChOP + Cop" + €, wp + Cpow ;
2. dC? = —c"of + C"wy + CP o™ + CPw ;
3. dOf = =02 AO} + AV " A wy + Al A w + A0, Aw
4. da = agw® + a%wy + ayw,
where h = 1,...,n, A%, = A0 = A8, 0 = A" = Cpppy = €M = 0, ¢, = €, and for

n > 1, we have a? = aC% and ay; = aCy.

Proof. Acting the exterior derivative d on Corollary 4.2; item 3, we get:
0=dCy AwAw?+ Cp(Cow A w® + CO0 A wy) AP — Cow A (=02 A " + aw A wP)
+dCP Nw A wy + CP(Cow A w® + CO0 Awy) Awp — CPw A (O] A wy + aw A wp).
After changing some indexes of the above equation, we obtain:
(dCy — CrOf) Nw AP +CpChw Aw® AwP + (dCP + CMOP) Aw A wy
+CPCUw A wy A wy, = 0.
Since CpCay = 3 (CyCa — CaCp) = 0 and CIPCA =~ (CPCe — CCP) = 0, then the above
equation reduced to:
(dCp — CLOP) ANw A w? + (dCP + C"OE) A w A w)y, = 0. @.1)
Since (dC, — C,0)') and (dCP + C"6F) are 1-forms, then they can be written by the
following formulae:
dC, — CpOF = CL02 + Cop™ + C"wy + Chow,
dC? + C"Op = CRO) + CPMwp + CP o + CPw.
Then by substitution the above formulae in Equation (4.1), we get CJ; = CP4 = Ciony =
chl = 0 and C,"* = C",,.
Now, by the same way above on Corollary 4.2; item 1, then we get:
—(dOg + 02 NOP) AP + aChw® Aw A wP + aCPw® Aw A wy —da A w* Aw = 0. (4.2)
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Since dO¢ + 6% A O] and da are 2-form and 1-form respectively, then they can written by the
family of basis on G-structure adjoined space as follows:

dOg + 08 NG} = AR A O] + AZEON A W + A0 A w, + AZLON A w + Apgw A w?
+AM W A wg + Ao /\ w + A%y A wg + AP w0, A w.
da = agw® + awy + ayo.
Then Equation (4.2) becomes:
—ASICOR A O] AW — AL, 00 A 0f A P Aadced A we A b Abho9d Aw A
w? — A‘[lbhd]wh At Aw? — ARG 0" Awg A wP — A 00" Aw A w? — AFMw), A
wg Aw? — A0, Aw Aw? + aChw®* Aw Aw? + aC’w® Aw A w, — agw® A
w*Aw—a%wg Aw* Aw = 0.
_Ag%;GSAH{Aw A[blth HQAwC/\a) Aadcgd /\(UC/\(U Abhogd /\(l)/\(l)b
— Af 0" Aw? Aw® — Al 0" A wg A w? — AR wp Awg A w?
— Alpno@™ Aw Aw? + aCpdfe" Aw A w® + apdiio™ Aw A wP
— A0 Aw A 0P — abiCPwn Aw A wP + aSiw, Aw A w? = 0.
So, we get:
1) ARG = Afjineg = A53° = 0;
2)  Afyna) = Afpny = A5 = 0;
3) Abho =0; (4.3)
4) A?bh]O — aC[bé‘,‘f] — a[h6g] = 0;
5) A% — ghsl 4+ asZch = 0.
Similarly, Corollary 4.2; item 2, give us:
(d6l — 08 NOE) Ay + aChwg A AP + aClwa Aw Awy —da Awg Aw = 0. (4.4)
According to Equations (4.3), we get:
gl —er neP = AP OM A w? + A2, " A w€ + ADS ™ A w,
+AL, " A w + AR w), A w.
So, Equation (4.4) turns into:
AbC 00 A w? A wy, + A2, " A W€ A wy, + AElth]wh Aws Awy + AL o Aw A w,
+APMO 4 A w Awp + aChwg Aw A wP + aCPwy Aw A wy — apo™ A wg Aw
—awy Awg Aw = 0.
From above, we have:
d
1) Aahd - Aahc AE;C;] = 0;
2) AahO 63“Ch + 63“}1 = 0, (45)
3) APMO 4 gqclbsM 4 qlhs? = 0
Equations (4.3); item 5 and (4.5); item 3 can be rewritten respectively as follow:
Alahlo 4 gctng® _ glhg® = g
AE,ah]O — aC[hds] + a[hSZ] =
Then we get Agah]o = 0. So aC[hSZ] - a[hSZ] = 0. By contracting a and b, we obtain
(n—1)(a C"* — a™) = 0, and this gives the result. The same can be done for Equations (4.3);
item 4 and (4.5); item 2.
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5. Riemannian Curvature and Ricci Tensors of C5 @ C,,-Manifolds
Theorem 5.1. The Riemannian curvature tensor have the following components for the class
Cs @ C;, on G-structure adjoined space given by:

oo = AP +ashce;

pna = Abh — a*8784
Ring = —2a%85,60; ;

9. RE,, = 2aCles]),
and all others components are zeros or we can find them by the symmetric property or
conjugate of above components.

Proof. From [26], any AC-manifold M?"*1 satisfies the following 2™ group of Cartan's
structure equations:

1. R(()lho = Cah - CaCh - 6}?“0 - 6}6{'“2 ,
2. (C)lha = —6;110561 ;

3. Ryzo = C* —CoCh;

4. Ropa = =20, aq) ;

5. Rpno = Apno — @65 Cy ;

6.

7.

8.

; . 1 .
k _ kA ol
do; + 6, NG = ERfkl‘U Aw,
where Rj,; denotes to the components of Riemannian curvature tensor R of M Zn*1 on G-

structure adjoined space.
Take k = 0,h,handl = 0,d,d in the above equations, we get:

dO} + 05 AOP + 0L AO! + 05 A = Ripow" Aw+ Ripown Aw + - Rhg0™ Ao +
Ripg@" A wq + %R}anh Awy. (5.1)
Take several cases depend on the values of i =0,a,a; j =0, b, b. From Corollary 4.2,
Theorem 4.3 and Theorem 3.4, these cases give us the following:
(1) If i = j = 0, then the Equation (5.1) give:
Rono = Rgﬁo = Rong = Rgna = Rgﬁ& = 0.
2)Ifi = a,j = 0, then from Equation (5.1), we get:
R0 = C%, — CoCp — 8 ag — 8ffa?; RS, = C —caechy

0Ro

Rghd = —26[‘;10561]; Rgha = —6}?05(1; R(L)lﬁa = 0.
(3)Ifi = a,j = b, then from Equation (5.1), we get

Riwo = Afpo — a8Cy; Rz, = AP + abfCY;

i ona = Abr — a?8385;  Rina = Rypg = 0.
(4)If i = a,j = b, then according to Equation (5.1) we get
R, = —2a%8%68; RE,, = 2aclesy):
a _ pa _ pa _
Rir0 = Rpna = Rgpa = 0. u

Theorem 5.2. The components of Ricci tensor s for the class C5 @ €y, on G-structure adjoined
space given by:

Soo = 2(C%, — C*C,) — 2n(ay + a?);

Sq0 = Abpo — naCy — (n — Dag;

Sab = Cpa — CpCy;

Sgp = C*, — C*Cy — aybff + A% — 2na®sf;

b=
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and others components we can find them by the symmetric property or conjugate of above
components.

Proof. According to Theorem 5.1 and the following relation (see [7]), we get:

Sij = —R{‘jk;
= _Rlpjo - Ricjc - Rfjc ; L,j,k=0,1,..,2n
Soo = —R800 — Réoa — Rioa
= 2(C%, — C4C,) — 2n(ay + a?).
Sao = —R3oo — Raop — Rgog
=Ab,, —naC, — (n — Da,.
Sab = —Rapo — Ripe — Rape
= Cpq — CpCy. A
Sab = —Rgpo — Répe — Rane

= C%, — C%Cy — aybp + A% — 2na’S2.
|
Corollary 5.3. The scalar curvature of Cs @ C;,-manifold on G- structure adjoined space is

Kk =2A% +4(C*,—C*C,) —2n(2n+ 1) a? — 4n a,.

Proof. The scalar curvature k is defined by k = g¥ s; ;j » where gY are the components of the
contravariant metric tensor [11].

=2A% +4(C*,—C*C,) —4n?a® —2na? —4na,. (From Theorem5.2) m

Definition 5.4. [27] The AC-manifold is called an n-Einstein manifold if

s(X,Y) =21 gX,Y) +u n(X)n(y); forall X,Y € X(M),
where A and u are scalar functions. If ¢ = 0 then M is called an Einstein manifold.

Theorem 5.5. The manifold of Cs @ C;, class is an Einstein manifold if and only if the
following conditions hold:

2(C%, — CC) — 2n(ag+ a®) =A; Cpa = CpCq; AL,o = (2n — 1)aCy;
A% = (2n—-1){C*, — C*C, — nay }.

Proof. Equation (2.1) and Definition 5.4, give the following:
Soo =Agoo =4, Sao =Sap =0 and  sap = Agap = A6y
According to the above and Theorem 5.2, we get:

1) 2(C%, — CCy) — 2n(ay + a?) = 4,

2) Cpq = CpC,y, Ab, o —naC, — (n—1a, =0,

3) C%, — C*Cp — ayS2 + A% — 2na®Sf = ASE.

Since a, = aC, for n > 1, then we get A2, = (2n — 1)aC, and this equality also holds if

n=1.
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Now, by contracting a and b in equality 3) above and adding the result with equality 1), we
get:

A% = (2n—-1D{C%, — C*C, —nay },
and this gives the result. ]

Remark 5.6. The scalar curvature of an Einstein Cs @ C;,-manifolds is ¥ = (2n + 1)A.
Proof. Regarding Corollary 5.3 and Theorem 5.5, we obtain

k=2(C% —C%,) — 2n(ay + a?) + 2{C%, — C*C, — nay + A% — 2n?a?};
=142n1=02n+ 1A [

Theorem 5.7. The manifold of Cs @ C;, class is an n-Einstein manifold if and only if the
following conditions hold:

1
A= E(Caa — C2C, +A%) — ay — 2na?;

1
u=2(0C*, —C,) — E(Caa — C*Cy+A%) + (1 —2n) ay;
Cpa = CpCyq; Agbo = (2n - DaC,.

Proof. Definition 5.4 implies that sq0 = A+ U; Sgo = Sqp» = 0 and s, = A65. Thus

1) 2(C%, — C%C,) — 2n(ay + a®) = 1+ p,

2) C%, — CoCp — aybf + A% — 2na?6f = A68%.

The contracting of Equation 2) gives the following:

3) C%, — C*C, —nag + A% — 2n%a? = n A

So, solving Equations (1) and (3) with respectto ¢ and A given the values of them. The other
results similar to the way of the proof of Theorem 5.5. ]

Remark 5.8. If A and u are constants in Theorem 5.7, then dA%S = 2n(2n — Da da.

Proof. Suppose that A and p are constants in Theorem 5.7, then the exterior differentiation for
the values of u and A in the above theorem implies that respectively:

2n—1 1
d(C% = CC) = (2n— Ddag — ~dA% = 0;

1 1
Ed(Caa —C%,) +EdA?§ —day—4nada=0.

So, the solution of above two equations with respect to dA%; gives the result.
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