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ABSTRACT

In this paper, we provide an affirmative response to the following question: if Morse-Novikov cohomology groups
of M with non-empty boundary dM do not vanish, then what topological or analytical (geometrical) constraints can
be enforced to ensure that the equation dyw = 7 is solvable for any non-trivial prescribed [5] in absolute HX(M) or
relative Hg(M, dM) Morse-Novikov cohomology groups?. Where dyw = dw + 0 A w and 0 # [0] € HéR(M) for any w €
Q*(M). Moreover, this motivates us to investigate the integrability requirements for a variety of perturbed Dirichlet
problems for dy, Neumann problems for §,, and perturbed mixed boundary value problems for the Poisson equation
from topological and analytical perspectives. Furthermore, we investigate the analytical properties of the eigenvalues
of the spacial kind of Poisson equations and show that they are positive and their corresponding eigenfunctions are
L?—orthogonal. Consequently, this proves that the set of the corresponding eigenfunctions spans a subspace of the
orthogonal complement of the kernel of this equation.
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1. Introduction

Let M be a closed, compact, oriented, smooth
Riemannian manifold of dimension n, and consider
0 # [0] € Hj,(M). Let Q% = QX(M) be the space of
smooth differential k-forms on M and dj : Qk—> Qk+1
the Morse-Novikov coboundary operator perturbed
by 6, which is given by dya =da+6 Aa for
each « € QK. Then we have d? = 0 because of the
closedness of 6, and this gives a complex (QX(M), dy).
As a result, this complex generates the Morse-Novikov
cohomology group HX(M) = HX(Q*(M),ds) [11.
However, if 6; and 6, are cohomologous to 6
then Hé‘l (M) ~ ng (M). Hence, Morse-Novikov
cohomology is much more difficult to calculate
than de Rham cohomology since it depends on 6. A.
Lichnerowicz researched Morse-Novikov cohomology
initially in [2] to study poisson geometry.

Novikov [3] investigated Morse-Novikov cohomology
within the framework of Hamiltonian mechanics,
and Guedira and Lichnerowicz separately developed
it [4]. This cohomology is extremely important in
investigating the locally conformally symplectic
and locally conformally K&hlerian structures
[5]. A significant result in this connection was
demonstrated by Chen in [6], who demonstrated that
the Morse-Novikov cohomology groups are trivial
on any Riemannian closed manifold M with almost
nonnegative sectional curvature. The fact is that a
closed Riemannian manifold with almost nonnegative
sectional curvature is known to be an almost nilpotent
space [7]. So, Chen’s main Theorem 1.1, is actually
a consequence of the following topological results:

Theorem 1.1 ([6]): If M is an almost nilpotent
closed Riemannian manifold, then the Morse-Novikov
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cohomology group HX(M) =0, Vk>0 and V[0] €
H,(M), [6] # 0.

So, the importance of Morse-Novikov cohomology
groups is without question. Actually, all these results
and more consider dM = ¢.

Therefore, in [8] we extend the theory of this coho-
mology to the case when dM # (. Through present
variety decompositions of the space of QX(M) in
terms of the Morse-Novikov differential operator
and its adjoint, we gain geometric and topological
insights about Morse-Novikov cohomology groups.
Furthermore, the deep relationship between the
decompositions of QX(M) and the topology and ge-
ometry of the refinement version of this cohomology
group of manifold with boundary is also investigated
in [9]. Here, we summarize the main results of [8] as
follows:

Morse-Novikov cohomology with dM # (. Because of
the Riemannian structure of M, on each «, 8 € QK, a
natural inner product may be defined, and it is given
by

m¢n=faAum, )
M

where » : Qk — Q" is the Hodge star operator [10].
Green’s formula for dy and 8y is given by the following
proposition:

Proposition 1.2 ([8]): We have

Mmm=wmm+fﬁwAwL (1.2)
oM

where o € H'QK, g e H'QK1 5, = (—1)* 1 wd_px =
8§+ (=1)* « (0 Ax), and i: IM — M is the inclusion
map.

The absolute and relative Morse-Novikov cohomol-
ogy groups are defined by HX(M) = H*(Q*, d) and
HX(M, dM) = H*(Q}, dy), respectively. Where Qf =
{€ € QM) | i* (&) = 0} refers to the space of Dirichlet
k-forms while QK = {& € Q*(M) | i*(»€) = 0} refers
to the space of Neumann k-forms. Moreover, the
Morse-Novikov Laplacian operator is defined by Ay =
dy 8y + 89ds, while the space of 6-harmonic fields ’H’g is
Hk = ker 8 N kerdy. H is infinite-dimensional. Con-
sequently, it is far too vast to transmit information
about cohomology. Therefore, we present the finite-
dimensional subspaces of #X which are

HIOC,D == H’; N Qﬁ

and

Our main results imply new decompositions to
smooth forms Q (or L2Q%):

Theorem 1.3 ([8]): We have
L*QF = dp Q5! @ 8, @ LPH]
where L>Hk (M) = H_’g

Theorem 1.4 ([8]): The space HX € H'Q*(M) can be
written as:

ng = Hg,co @ HIGC,D’

HIO( = Hg,ex D ,HIQ(,N’

such that 1y . = {p € Hy | p = dpu} and Hf ., = {c €

0,co

H | ¢ =dox}

Theorems 1.3 and 1.4 imply:

Corollary 1.5 ([8]): We have

L2QF = dp Q! @ 8, Q™ ® HE [, ® LHY ., (1.3)

L2QF = dy Q5 @ 5,5 @ My @ LPHE . (1.4)
Consequently, we prove the following

isomorphisms:

Theorem 1.6 ([8]):
have

1. HE(M, 0M) = H .

2. Hk(D) = HE .

3. (Poincaré-Lefschetz dudlity of Morse-Novikov):
The Hodge * operator on QX gives

For any closed one-form 6, we

HEM) = H KM, aM).

4. (generalized  Haller’s
HY kM, aM) = H* , (M)
HY(Q*, d_).

isomorphism  [11]):
where  H*,(M) =

On the other hand, the investigation of boundary
value problems for differential forms on a compact
Riemannian manifold with a boundary is not
novel. Many researchers have studied boundary
value problems of classical exterior derivative for
differential forms in the literature, such as Duff
and Spencer [12, 13] and [14]. In [15], Georgescu
considers a variety of nonhomogeneous boundary
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value problems of exterior derivative for differential
forms on a compact Riemannian manifold with
boundary, and these problems considered are
essentially the same as those considered by Duff and
Spencer [13], where the methods he used were based
on trace theorems and transposition. Bolik [16] gives
solutions to boundary value problems for differential
forms, generalizing Poisson’s equation for functions.
In [17, 18], Bolik provides solutions to second-order
boundary value problems for differential forms by
means of boundary integral methods, and further
constraints are imposed by the boundary conditions
and topological properties. Also, different kind of
researches may be found in [19-22].

To the best of our knowledge, we have not en-
countered any work that discusses the relationship
between Morse-Novikov cohomology groups and
boundary value problems. As a result, this study at-
tempts to move in this new direction.

First of all, we have noticed that under very re-
strictive conditions, Theorem 1.1 implicitly provides
the sufficient condition of the existence solution w €
Qk-1(M) such that dyw = n for any trivial Morse-
Novicov cohomology class [n] = [0]. So, this moti-
vates us to investigate the integrability requirements
for such an equation without any restrictions on the
manifold M with a nonempty boundary. To this end,
we shall revisit the above decompositions of Qk(v),
but in the context of solving differential equations on
Qk(M) to answer the main question imposed in the
abstract. Fortunately, the answer to this question is
affirmative, and this led us to investigate the integra-
bility conditions for a variety of perturbed boundary
value problems of differential forms in terms of dy, 8y,
and Ay. We will do so by using the technique of the
decompositions given above. Henceforth, M will be
a compact, oriented, smooth Riemannian manifold
with nonempty boundary.

2. The perturbed Dirichlet and Neumann
boundary value problems

Theorem 2.1: Suppose ¢ e Q'(M) and 7€
QK(dM), the perturbed Dirichlet problem

¢ on M,

dea) =
{ T on oM 2.1

o =

is solvable, iff ¢ and t satisfy the integrability conditions

(c,8B) =0 V8B € 522 2.2)

(g,x):f "(w A %K)
M

= / TAT xK Vi € HEFL(MD. (2.3)
oM

A solution o can be selected, such that [w] €

HK(QK(M), 85).

Proof: Obviously, if Eq. (2.1) is given, then the inte-
grability conditions (2.2) and (2.3) are satisfied. Now,
to prove that these conditions are also sufficient, we
apply Theorem 1.3 to ¢, and obtain

¢ = d@Olg =+ 53/35- + k..
The integrability condition (2.2) forces &y, = 0.

However, we can build an extension T € QK(M) of t
where i*T = v and T can be written as

T = 59[3? + k7. (24)

We can neglect dyar because i*T = t and i*dgar =
digi*a7 = 0. Now, using Theorem 1.3 again on n =
dyT to get

n = dpary + Ky,

since 7 is dyg-exact then &y 8, has to vanish. According
to these decompositions, we set

w=0:+T—a,.
Obviously, dyw = ¢ +«, — k. on M and i*w =t on

dM. But Proposition 1.2 and integrability condition
(2.3) assert that

(ky — ke, A) = / T"(wA*A) — (¢, A) =0
aM
Vi e HET (VD).

Since, «, —«. € HKT1(M) then «, — k. =0. Thus,
there exists a solution w € k(M) that satisfies
Eq. (2.1). Furthermore,

Sga) = 8(90[5- + 89? - 890[,’ =0

because the components «. and «,, can be chosen such
that §po. = 8y, = 0 (using the principle of gauge
freedom in our decompositions), and since 8,7 = 0,
by Eq. (2.4), we obtain [w] € HX(QX(M), 8). O

Corollary 2.2: The integrability projection conditions
(2.2) and (2.3) for the perturbed Dirichlet boundary
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value problem (2.1) are equivalent to the following dif-
ferential conditions:

doc =0, "¢ =dpgt (2.5)
(¢, \) :f TAT %A,

oM
Vi € HED (M) = HEM (M, aM). (2.6)

Proof: We notice that Proposition 1.2 implies the
equivalence between condition (2.2) and

(des, B) =0 VB e QkP2(),

since, QKF2(M) C L2Q*+2(M) is dense, condition (2.2)
is equivalence to dyc = 0. The construction of the
solution w in the proof of Theorem 2.1 and condition
(2.3) induce that

(¢, k) =/ T AT %k = (AT, k) Vi € HEFL(MD),
oM

where i*¢ = dy7, and i*T = 7. It means that condi-
tion (2.6) is a subcondition of (2.3). Thus, this proves
conditions (2.2) and (2.3) imply conditions (2.5) and
(2.6).

In turn, Theorem 1.4 asserts that k € 7—[’9‘“ (M) splits
orthogonally into ¥ = A, + 83y, where A, € ’H’ngl (M)
and 8,y, € HX*1(M). Hence, condition (2.3) is equiva-

0,co
lent to the following two independent conditions: the

first one is in fact the integrability condition (2.6),
while the other one is:

(. 807i) = f T AT Sy Vogye € HELLOM). (2.7)
oM

We must now demonstrate that Eq. (2.7) follows from
(2.5). But, Proposition 1.2 and (2.5) imply

(¢, 80vic) = —/ i"(c A*y) = —/ disgT AT x ¥
oM oM

=/ T AT % 89V
aM

This identity shows that condition (2.7) follows from
(2.5). Hence, this proves the converse. O

Theorem 2.3: Suppose o € Q1(M) and ¢ €
Q" *(9M), the perturbed Neumann problem

89&) =
"*w =

is solvable iff o and ¢ satisfy the integrability conditions

o on M,

¢ on oM, (2.8)

(0,dgar) =0 Vdpa € dpQK2 (2.9)

(o, A) = —/ (L A *w)
aM

= —/ "AAQ, VaeHT. (2.10)
oM

A solution w can be selected, such that [w] € Hg (M).

Proof: We set u = xw € Q" *X(M), problem (2.8) is
then equivalent to the following Dirichlet problem:

o = (D xo 'p =g,

which by Theorem 2.1 is solvable iff xo and ¢ satisfy
the integrality conditions

(x0,80B) =0 V8B € 8,28 2 (M)
(s0. k) = (~1)F /

oM

AT %K Vi € HE .

Now, if we set A = »x and o = %, then these condi-
tions are equivalent respectively to (2.9) and (2.10).
Since, u can be chosen, such that 8, = 0, then this
implies » can be chosen, such that [w] € HX(M) as
required. O

Corollary 2.4: The integrability projection conditions
(2.9) and (2.10) for the perturbed Neumann boundary
value problem (2.8) are equivalent to the following dif-
ferential conditions

i* %o = (=1 dgp

8p0 =0, (2.11)

(o, A) = —/ A AQ, Yae HEN M) = HET D,
oM '
(2.12)

Proof: Similarly, using the same setting as above, the
proof will follow from Corollary 2.2. O

Remark 2.5: In applications, the differential condi-
tion (2.6) has the important feature of allowing one
to assess the integral (¢,A) = f,, 7 Ai*x 2 only for
a finite number of ’H’g}l (M), whereas the projection
condition (2.3) would demand a comparison of these
integrals for every infinite dimensional H19<+1 M).
Similarly, for the perturbed Neumaan problem (2.8).

3. Nonvanishing Morse-Novikov cohomology
group

Firstly, we have to exclude another constraint on
the manifold M with boundary rather than to be an
almost nilpotent closed manifold (see, Theorem 1.1),
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which make its Morse-Novikov cohomology group
vanish.

Lemma 3.1 (The Poincaré lemma for Morse-
Novikov cohomology): Let M be a contractible
manifold, then Morse-Novikov cohomology groups
HX(M) and HXM,dM) vanish for all k, where
0 # [0] € Hj,(M).

Proof: In [8], Theorem 26 asserts that “If [6;], [02] €
H}.(M) such that [6;] = [6,] then HX(M,oM)=
Hg (M, 0M), and H{ (M) = Hf (M), Vk = 0”.
Since, M is contractible then HZ;R (M) =0 and
thus [0] = [0] (by Poincaré lemma of dr Rham
cohomology). Therefore, Theorem 26 implies that
Hf(M) = HX(M) = H5,(M) = 0 as required. More-
over, Poincaré-Lefschetz duality of Morse-Novikov
(Theorem 1.6) implies H;‘(M, oM) vanishes as well.(J

Henceforth, M will be a noncontractible compact,
oriented smooth Riemannian manifold with
boundary and a nonvanishing Morse-Novikov
cohomology group. The following theorems provide
the necessarily and sufficient conditions of the
existence solution of dyw =1 for [5] € Hg(M) and
for [n] € HX(M, dM), respectively.

Theorem 3.2: Let £ € QK(M). Then & € dpy Q<1 (M)
(i.e. & is dy—exact) if and only if £ obeys the integrability
conditions

[E]1 € HX(M) and (£,1) =0 VieHE,. (3.1)
Proof: Let £ € dyQ2*~1(M) then there exists a solution
w € Q¥ 1(M) such that £ = dyw. Using Eq. (1.2), one
can easily verify that & satisfies conditions (3.1).

Now, to prove the converse: Eg. (1.4) in
Corollary 1.5 implies

&= d@()[g + 59,35 + Ae + dgé‘g S dQQIk)_l &) SQQII%-H
& HE y(M) ® L*Hf . (M).

We infer §y8; =0 and A; =0 because conditions
(3.1) and Eq. (1.2) imply that (dy&, Be) = (&, 808:) =
[86Be1> =0 and (&, ) = [|A¢]|> = 0, respectively.
Thus, there exists o = o; + & € Q¥ 1(M) such that
& = dyw which demonstrates that conditions (3.1)
are equivalent to £ € d, QX1 (M). O

Now, we have the following theorem for the nec-
essary and sufficient conditions of the existence
solution for the relative case:

Theorem 3.3: Let & € QK(M). Then & € dy QK1 (M)
iff & satisfies the integrability conditions

6] e HYM,0M) and (£,1)=0 VaeHf,. (3.2)

Proof: As above, it is easy to verify condition (3.2)
when & € dg Q,k;l(M ) such that i*¢ = 0. Conversely,
Corollary 1.5 implies

&= d@é‘g + Sgve + ke + 0o € deQC;I &5) SQQII%JA
® Hy p(M) & L*Hf ., (M).

In this case, we must have §y: =0, «:=0 and
89e: = 0 because conditions (3.2) and Eq. (1.2) imply
that (dg, ye) = (€, 8ove) = 1801112 =0, (. Kke) =
ke |* = 0 and (dg§, &¢) = (£, Spee) = [I8pes 1> = O, re-
spectively. Thus, there exists ¢; € Q]’g‘l(M ) such that
& = dy¢: which proves that conditions (3.2) are equiv-
alent to £ € dy QK1 (MD). O

Corollary 3.4: Let { € QK(M). Then ¢ € §,QK1 (M)
(ie. ¢ is S9—coexact) iff ¢ satsfies the integrability
conditions

[¢] e HYQXWMD), 8) and (¢,x) =0 Vi € HE .
(3.3)

Proof: Similarly, it is easy to verify condition (3.3)
when ¢ € 8o Q1 (M). Now to prove the converse,
Corollary 1.5 implies

¢ = dok; + 8gy; + kp + Spec € g5 @ 8, Q!
@ HE (M) ® L*Hf ., (M).

In this case, we must have dy¢; =0, and «, =
0 because condition (3.3) and Eq. (1.2) imply
that (&, 89¢) = (dp&;, £) = |dpé&, > = 0, and (¢, ;) =
|k > = 0, respectively. Hence, there exists n = y; +
&¢, such that ¢ = §yn which illustrate that conditions
(3.3) are equivalent to ¢ € 8, QK1 (M). O

Theorem 3.5: Let & € QXT1(M), p € Q" 1(M) and
¥ € QK(OM), the boundary value problem

{deu = & and Su=p on M,

% on 0M, (3.4)

*u =
is solvable, if and only if
[0] € H*1(QM), ), (p,x) =0 Vi € HEL
and
[€] € HFT' (M), i€ = dyo?,

(E ) = f A, VAeHE
oM

Uniqueness of the solution of (3.4) is determined by
arbitrary Dirichlet 6-harmonic fields 5 ,.
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Proof: If Eq. (3.4) is given, then it satisfies directly
these conditions. Now, the supposed integrability
conditions on p together with Corollary 3.4 imply
the existence of p,, such that p = §yu,. Hence, we
set u = g + [4,, 50 Eq. (3.4) turns into the following
Dirichlet problem of dy,

dope =& —dgp, and Syug=0 on M

i*ug =9 —i*u, on oM

which is solvable by Theorem 2.1 together with
Corollary 2.2. More precisely, conditions (2.5) and
(2.6) for this problem are equivalent to

do(dop,) =0, *(dou,) =die(i*,) and

(dopp, ) = faMi*Mp AT %A, YA e HEY.

Thus, there exists a solution p = us+u, to
Eq. (3.4). O

Furthermore, using the duality given in Section 2

between dy and &y, we infer:

Corollary 3.6: Let ¥ € Qk(OM). The boundary value
problem

dop =
i**pL =

is solvable, if and only if
[£] e HFT' M),  (5.6) =0 Yk e HEY
and

[p] € HH(QKM), 85).  1*(xp) = () * 8o ¥,

. . k-1
(p, L) = —LMl*AAl**M, VieHyy-

The uniqueness solution of (3.5) is determined by ar-
bitrary Neumann 6-harmonic fields 5 .

Proposition 3.7: Let 9 € QX(0M).

1. There exists a 6 —harmonic field xy € H’g(M ) sat-
isfying i*xy = ¢ if and only if

dig =0, fﬁ/\i**kzo, Vi e HE.
oM

(3.6)

2. There exists a —harmonic field y, € 7—[’9‘ (M) sat-
isfying i* x y» = »¢ if and only if

890 = 0, / AAx) =0, VYreHL
oM ’
(3.7)

Proof: Branch (1) is a direct consequence of Theo-
rem 3.5, since «y € ’H’g(M ) then the boundary value
problem reduce to

dgl(g = 0, 59/(9 =0 and i*Kg =1

which is solvable iff conditions (3.6) holds. Similarly,
the dual results of branch (2) follow from branch
(1) together with the fact that xy € H5(M) iff xxy €
Hrk ). O

Proposition 3.7 gives us the following interesting
decomposition.

Proposition 3.8: The pullback of the space of
6 —harmonic filed i*?—l’(j(M ) can be decomposed into:

PHEM) = EF,(OM) + T HE \ (MD).

Where i*Hf (M) = {i*c | k € Hf \ (M)} and ¥, (0M)
= {digy | y € Q1 OM)).

Proof: Let « ¢ ’H’g (M) then it can be written in
the form « = dgy + v € Hf ., (M) @ HE (M) by The-

0,ex
orem 1.4. Clearly, this gives

i'ic = digi*y +i'v € EF, (M) + " HE  (M).
So, this proves that i*Hk(M) € £X,(0M) + i*?—l’g’ ~OD.

Conversely, for di¢® € QX(0M) and A € H’gt)l (M), we
get

/ digd AT %A = / dig(3 AT %x1) =0.
aM aM
Hence, d;-p satisfies
dig(dig) = 0, / A A FxA=0
aM
VA € Hit (M)
which is in fact condition (3.6). So, Proposition 3.7
implies that there exists x € HX(M) such that i*x =

d;¢®. This proves the converse is true as well. |

Proposition 3.9: The space 7, (or Hf,) can
be determined uniquely by the space i*H’g,N (or
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" HE p) respectively. Consequently, i *7—[0 N = HFVD
and i*Hf , = HX(M, oM).

Proof: We merely need to demonstrate this
His = THp -

Clearly, i* : H% ;v — i*HE \ is surjective and also it
is injective because keri* = {0}, so it is a bijection
map. Hence, Mk \ = i*H% = H5(M). Consequently,
combining this with Theorem 1.6 (Morse-Novikov-
Poincaré-Lefschetz duality), we infer that i*?—[,g;\}‘ ~

HE = i*H’g’D and hence i*H’g,D = HYM, 9M). O

Theorem 3.10: Given x € QK(M) and ¥ € QK(9M).
Then the mixed boundary value problem of perturbed
Poisson equation

Apgp = x on M,
{i*u = 9 and *Squ=0 on oM, (3.8)
is solvable, if and only if
(X, 2)=0 VaeHk,. (3.9)

The uniqueness solution of (3.8) is determined by an
arbitrary Dirichlet 6-harmonic field.

Proof: Clearly, Green’s formula for dy and &, Eq. (1.2)
implies that Eq. (3.8) can satisfy condition (3.9).

Now assume x € Qk(M) satisfies (x, A) =0, VA €
H’g’D (i.e. x € (H’(j,D)L). We can, however, build an
extension pu; € QK(M) to ¥ € QX(OM) such that
=19, 1 =0Bu, +ku € SR (M) & HEM).
We are able to do so, the component dya,, €
dg Qﬁ’l (M) of an arbitrary extension u; makes
no contribution to the portion i*u; because of
i*a,, = 0. Now, Eq. (1.2) implies that (Agui, A) =
0, Vi€ Hk, which means Agpy € (H5 )+ as well.
Hence, x — Agu1 € (H} ,)*. We are now implement-
ing Proposition 13 in [8], since x — Agu1 € (M5 p)*
is smooth, it follows that there is a unique smooth
differential form uy € Qf N (H% ;)* which satisfies
the equation

Agpo = x—Apu1 on M,
"o = 0 on O0M, (3.10)
*(Bguz) = 0 on OJM.

Now, let pus = u — w1, then Eq. (3.10) becomes an

Eq. (3.8). Hence, there is a solution to the perturbed
Poisson equation which is u = u; + 2, where the

uniqueness of u is determined by an arbitrary Dirich-
let 6-harmonic field. O

Now, we are going to present fruitful analysis for a
special kind of perturbed Poisson Eq. (3.8), but with
¢ = 0. So, we have the following results.

Proposition 3.11: The eigenvalues of the restricted
Morse-Novikov Laplacian operator

Ag  H2QK — 120K

are positive, where H2QX(M) = {v € H2QK | i*v =

0, i*(8pv) = 0}.

Proof: Let n € Hzﬁk(l\@ and A € R such that Zgn =
An. So, it follows that (Ayn, n) = A(n, n). But, Eq. (1.2)
asserts that the left hand side can be written by the
form ||dgn | + 18¢n]I> = Alln||?. Therefore, A must be
positive. |

Prgposition 3.12: Let A1 # A be two eigenvalues
of Ay, then the eigenfunctions n and y corresponding
to A, and A, respectively, are L2—orthogonal.

Proof: Since, 1, y € HZQk(M) be eigenfunctions then
we have Ag?’] = A and Ag)/ = Jay. Clearly, Ao
is a self adjoint operator on Hsz(M) so it fol-
lows first that (Agn y)=(n, A@)/) = A1(n,y), but
(n, Agy) = Az(n, y). Combining all these together, we
get A1(n, y) = Aa(n, y) which must imply that (5, y) =
0 as required because A; # As. O

Remark 3.13: Proposition 3.12 shows that if
A1, A2, ..., Ay are distinct eigenvalues of Ay then the
set of corresponding eigenfunctions {ni,n2, ..., 7m}
spans a subspace of the orthogonal complement of
ker Ay.

4. Future work

In the context of the Atiyah-Singer index theorem
[23], the existence and uniqueness of solutions given
in Theorem 3.5 could be understood as an existence
result for the Dirichlet boundary value problem for a
perturbed nonhomogenous Dirac operator, which we
can define as
dy + 8 : Q° —> Q" @ QM
where Q&e'(M) and Q°4(M) refer to differential
forms of even and odd degree, respectively. So that
Q* = Q& @ Q% Furthermore, the Atiyah-Singer in-
dex theorem, asserts that the topological (analytical)
index of every elliptic complex of M is independent. In
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[8], we obtain that the Euler characteristics x (M, 0)
of Morse-Novikov complex is given by

xM,6) = x(OM, 0) + x (M, oM, 9)
= x(OM) + x (M, oM) = x (M).

Hence, these results may correspond to a prelimi-
nary proposal to establish the perturbed generalized
Atiyah-Singer index theorem on manifolds with
boundary.
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