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ABSTRACT

In this paper, we provide an affirmative response to the following question: if Morse-Novikov cohomology groups
of M with non-empty boundary ∂M do not vanish, then what topological or analytical (geometrical) constraints can
be enforced to ensure that the equation dθω = η is solvable for any non-trivial prescribed [η] in absolute Hk

θ (M) or
relative Hk

θ (M, ∂M) Morse-Novikov cohomology groups?. Where dθω = dω + θ ∧ ω and 0 6= [θ] ∈ H1
dR(M) for any ω ∈

�k(M). Moreover, this motivates us to investigate the integrability requirements for a variety of perturbed Dirichlet
problems for dθ , Neumann problems for δθ , and perturbed mixed boundary value problems for the Poisson equation
from topological and analytical perspectives. Furthermore, we investigate the analytical properties of the eigenvalues
of the spacial kind of Poisson equations and show that they are positive and their corresponding eigenfunctions are
L2
−orthogonal. Consequently, this proves that the set of the corresponding eigenfunctions spans a subspace of the

orthogonal complement of the kernel of this equation.
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1. Introduction

Let M be a closed, compact, oriented, smooth
Riemannian manifold of dimension n, and consider
0 6= [θ] ∈ H1

dR(M). Let �k
= �k(M) be the space of

smooth differential k-forms on M and dθ : �k
−→�k+1

the Morse-Novikov coboundary operator perturbed
by θ , which is given by dθα = dα + θ ∧ α for
each α ∈ �k. Then we have d2

θ = 0 because of the
closedness of θ , and this gives a complex (�k(M),dθ ).
As a result, this complex generates the Morse-Novikov
cohomology group Hk

θ (M) = Hk(�∗(M),dθ ) [1].
However, if θ1 and θ2 are cohomologous to θ

then Hk
θ1

(M) ' Hk
θ2

(M). Hence, Morse-Novikov
cohomology is much more difficult to calculate
than de Rham cohomology since it depends on θ . A.
Lichnerowicz researched Morse-Novikov cohomology
initially in [2] to study poisson geometry.

Novikov [3] investigated Morse-Novikov cohomology
within the framework of Hamiltonian mechanics,
and Guedira and Lichnerowicz separately developed
it [4]. This cohomology is extremely important in
investigating the locally conformally symplectic
and locally conformally Kählerian structures
[5]. A significant result in this connection was
demonstrated by Chen in [6], who demonstrated that
the Morse-Novikov cohomology groups are trivial
on any Riemannian closed manifold M with almost
nonnegative sectional curvature. The fact is that a
closed Riemannian manifold with almost nonnegative
sectional curvature is known to be an almost nilpotent
space [7]. So, Chen’s main Theorem 1.1, is actually
a consequence of the following topological results:

Theorem 1.1 ([6]): If M is an almost nilpotent
closed Riemannian manifold, then the Morse-Novikov
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cohomology group Hk
θ (M) = 0, ∀k ≥ 0 and ∀[θ] ∈

H1
dR(M), [θ] 6= 0.

So, the importance of Morse-Novikov cohomology
groups is without question. Actually, all these results
and more consider ∂M = ∅.

Therefore, in [8] we extend the theory of this coho-
mology to the case when ∂M 6= ∅. Through present
variety decompositions of the space of �k(M) in
terms of the Morse-Novikov differential operator
and its adjoint, we gain geometric and topological
insights about Morse-Novikov cohomology groups.
Furthermore, the deep relationship between the
decompositions of �k(M) and the topology and ge-
ometry of the refinement version of this cohomology
group of manifold with boundary is also investigated
in [9]. Here, we summarize the main results of [8] as
follows:

Morse-Novikov cohomology with ∂M 6= ∅. Because of
the Riemannian structure of M, on each α, β ∈ �k, a
natural inner product may be defined, and it is given
by

〈α, β〉 =

∫
M
α ∧ (?β), (1.1)

where ? : �k
→ �n−k is the Hodge star operator [10].

Green’s formula for dθ and δθ is given by the following
proposition:

Proposition 1.2 ([8]): We have

〈dθα, β〉 = 〈α, δθβ〉 +
∫
∂M

i∗(α ∧ ?β) , (1.2)

where α ∈ H1�k, β ∈ H1�k+1, δθ = (−1)nk+1 ? d−θ? =
δ + (−1)nk ? (θ ∧ ?), and i : ∂M→ M is the inclusion
map.

The absolute and relative Morse-Novikov cohomol-
ogy groups are defined by Hk

θ (M) = Hk(�∗,dθ ) and
Hk
θ (M, ∂M) = Hk(�∗D,dθ ), respectively. Where �k

D ={
ξ ∈ �k(M) | i∗(ξ ) = 0

}
refers to the space of Dirichlet

k-forms while �k
N =

{
ξ ∈ �k(M) | i∗(?ξ ) = 0

}
refers

to the space of Neumann k-forms. Moreover, the
Morse-Novikov Laplacian operator is defined by1θ =

dθδθ + δθdθ , while the space of θ -harmonic fields Hk
θ is

Hk
θ = ker δθ ∩ kerdθ . Hk

θ is infinite-dimensional. Con-
sequently, it is far too vast to transmit information
about cohomology. Therefore, we present the finite-
dimensional subspaces of Hk

θ which are

Hk
θ,D = Hk

θ ∩�
k
D

and

Hk
θ,N = Hk

θ ∩�
k
N

Our main results imply new decompositions to
smooth forms �k (or L2�k):

Theorem 1.3 ([8]): We have

L2�k
= dθ�k−1

D ⊕ δθ�
k+1
N ⊕ L2Hk

θ

where L2Hk
θ (M) = Hk

θ .

Theorem 1.4 ([8]): The space Hk
θ ⊆ H1�k(M) can be

written as:

Hk
θ = Hk

θ,co ⊕Hk
θ,D,

Hk
θ = Hk

θ,ex ⊕Hk
θ,N,

such that Hk
θ,co = {ρ ∈ Hk

θ | ρ = δθµ} and Hk
θ,ex = {ς ∈

Hk
θ | ς = dθχ}

Theorems 1.3 and 1.4 imply:

Corollary 1.5 ([8]): We have

L2�k
= dθ�k−1

D ⊕ δθ�
k+1
N ⊕Hk

θ,D ⊕ L2Hk
θ,co, (1.3)

L2�k
= dθ�k−1

D ⊕ δθ�
k+1
N ⊕Hk

θ,N ⊕ L2Hk
θ,ex. (1.4)

Consequently, we prove the following
isomorphisms:

Theorem 1.6 ([8]): For any closed one-form θ , we
have

1. Hk
θ (M, ∂M) ∼= Hk

θ,D.

2. Hk
θ (M) ∼= Hk

θ,N.

3. (Poincaré-Lefschetz duality of Morse-Novikov):
The Hodge ? operator on �k gives

Hk
θ (M) ∼= Hn−k

θ (M, ∂M).

4. (generalized Haller’s isomorphism [11]):
Hn−k
θ (M, ∂M) ∼= Hk

−θ (M) where Hk
−θ (M) =

Hk(�∗,d−θ ).

On the other hand, the investigation of boundary
value problems for differential forms on a compact
Riemannian manifold with a boundary is not
novel. Many researchers have studied boundary
value problems of classical exterior derivative for
differential forms in the literature, such as Duff
and Spencer [12, 13] and [14]. In [15], Georgescu
considers a variety of nonhomogeneous boundary
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value problems of exterior derivative for differential
forms on a compact Riemannian manifold with
boundary, and these problems considered are
essentially the same as those considered by Duff and
Spencer [13], where the methods he used were based
on trace theorems and transposition. Bolik [16] gives
solutions to boundary value problems for differential
forms, generalizing Poisson’s equation for functions.
In [17, 18], Bolik provides solutions to second-order
boundary value problems for differential forms by
means of boundary integral methods, and further
constraints are imposed by the boundary conditions
and topological properties. Also, different kind of
researches may be found in [19–22].

To the best of our knowledge, we have not en-
countered any work that discusses the relationship
between Morse-Novikov cohomology groups and
boundary value problems. As a result, this study at-
tempts to move in this new direction.

First of all, we have noticed that under very re-
strictive conditions, Theorem 1.1 implicitly provides
the sufficient condition of the existence solution ω ∈
�k−1(M) such that dθω = η for any trivial Morse-
Novicov cohomology class [η] = [0]. So, this moti-
vates us to investigate the integrability requirements
for such an equation without any restrictions on the
manifold M with a nonempty boundary. To this end,
we shall revisit the above decompositions of �k(M),
but in the context of solving differential equations on
�k(M) to answer the main question imposed in the
abstract. Fortunately, the answer to this question is
affirmative, and this led us to investigate the integra-
bility conditions for a variety of perturbed boundary
value problems of differential forms in terms of dθ , δθ ,
and 1θ . We will do so by using the technique of the
decompositions given above. Henceforth, M will be
a compact, oriented, smooth Riemannian manifold
with nonempty boundary.

2. The perturbed Dirichlet and Neumann
boundary value problems

Theorem 2.1: Suppose ς ∈ �k+1(M) and τ ∈

�k(∂M), the perturbed Dirichlet problem

{
dθω = ς on M,
i∗ω = τ on ∂M (2.1)

is solvable, iff ς and τ satisfy the integrability conditions

〈ς, δθβ〉 = 0 ∀δθβ ∈ δθ�
k+2
N (2.2)

〈ς, κ〉 =

∫
∂M

i∗(ω ∧ ?κ )

=

∫
∂M
τ ∧ i∗ ? κ ∀κ ∈ Hk+1

θ (M). (2.3)

A solution ω can be selected, such that [ω] ∈
Hk(�k(M), δθ ).

Proof: Obviously, if Eq. (2.1) is given, then the inte-
grability conditions (2.2) and (2.3) are satisfied. Now,
to prove that these conditions are also sufficient, we
apply Theorem 1.3 to ς , and obtain

ς = dθας + δθβς + κς .

The integrability condition (2.2) forces δθβς = 0.
However, we can build an extension τ ∈ �k(M) of τ
where i∗τ = τ and τ can be written as

τ = δθβτ + κτ . (2.4)

We can neglect dθατ because i∗τ = τ and i∗dθατ =
di∗θ i∗ατ = 0. Now, using Theorem 1.3 again on η =

dθτ to get

η = dθαη + κη,

since η is dθ -exact then δθβη has to vanish. According
to these decompositions, we set

ω = ας + τ − αη.

Obviously, dθω = ς + κη − κς on M and i∗ω = τ on
∂M. But Proposition 1.2 and integrability condition
(2.3) assert that

〈κη − κς , λ〉 =

∫
∂M

i∗(ω ∧ ?λ)− 〈ς, λ〉 = 0

∀λ ∈ Hk+1
θ (M).

Since, κη − κς ∈ Hk+1
θ (M) then κη − κς = 0. Thus,

there exists a solution ω ∈ �k(M) that satisfies
Eq. (2.1). Furthermore,

δθω = δθας + δθτ − δθαη = 0

because the components ας and αη can be chosen such
that δθας = δθαη = 0 (using the principle of gauge
freedom in our decompositions), and since δθτ = 0,
by Eq. (2.4), we obtain [ω] ∈ Hk(�k(M), δθ ). �

Corollary 2.2: The integrability projection conditions
(2.2) and (2.3) for the perturbed Dirichlet boundary
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value problem (2.1) are equivalent to the following dif-
ferential conditions:

dθς = 0, i∗ς = di∗θτ (2.5)

〈ς, λ〉 =

∫
∂M
τ ∧ i∗ ? λ,

∀λ ∈ Hk+1
θ,D (M) ∼= Hk+1

θ (M, ∂M). (2.6)

Proof: We notice that Proposition 1.2 implies the
equivalence between condition (2.2) and

〈dθς, β〉 = 0 ∀β ∈ �k+2
N (M),

since,�k+2
N (M) ⊆ L2�k+2(M) is dense, condition (2.2)

is equivalence to dθς = 0. The construction of the
solution ω in the proof of Theorem 2.1 and condition
(2.3) induce that

〈ς, κ〉 =

∫
∂M
τ ∧ i∗ ? κ = 〈dθτ , κ〉 ∀κ ∈ Hk+1

θ (M),

where i∗ς = di∗θτ , and i∗τ = τ . It means that condi-
tion (2.6) is a subcondition of (2.3). Thus, this proves
conditions (2.2) and (2.3) imply conditions (2.5) and
(2.6).

In turn, Theorem 1.4 asserts that κ ∈ Hk+1
θ (M) splits

orthogonally into κ = λκ + δθγκ where λκ ∈ Hk+1
θ,D (M)

and δθγκ ∈ Hk+1
θ,co (M).Hence, condition (2.3) is equiva-

lent to the following two independent conditions: the
first one is in fact the integrability condition (2.6),
while the other one is:

〈ς, δθγκ〉 =

∫
∂M
τ ∧ i∗ ? δθγκ ∀δθγκ ∈ Hk+1

θ,co (M). (2.7)

We must now demonstrate that Eq. (2.7) follows from
(2.5). But, Proposition 1.2 and (2.5) imply

〈ς, δθγκ〉 = −

∫
∂M

i∗(ς ∧ ?γκ ) = −
∫
∂M

di∗θτ ∧ i∗ ? γκ

=

∫
∂M
τ ∧ i∗ ? δθγκ .

This identity shows that condition (2.7) follows from
(2.5). Hence, this proves the converse. �

Theorem 2.3: Suppose σ ∈ �k−1(M) and ϕ ∈

�n−k(∂M), the perturbed Neumann problem{
δθω = σ on M,
i∗?ω = ϕ on ∂M, (2.8)

is solvable iff σ and ϕ satisfy the integrability conditions

〈σ,dθα〉 = 0 ∀dθα ∈ dθ�k−2
D (2.9)

〈σ, λ〉 = −

∫
∂M

i∗(λ ∧ ?ω)

= −

∫
∂M

i∗λ ∧ ϕ, ∀λ ∈ Hk−1
θ (M). (2.10)

A solution ω can be selected, such that [ω] ∈ Hk
θ (M).

Proof: We set µ = ?ω ∈ �n−k(M), problem (2.8) is
then equivalent to the following Dirichlet problem:

dθµ = (−1)k ? σ i∗µ = ϕ,

which by Theorem 2.1 is solvable iff ?σ and ϕ satisfy
the integrality conditions

〈?σ, δθβ〉 = 0 ∀δθβ ∈ δθ�
n−k+2
N (M)

〈?σ, κ〉 = (−1)k
∫
∂M
ϕ ∧ i∗ ? κ ∀κ ∈ Hn−k+1

θ (M).

Now, if we set λ = ?κ and α = ?β, then these condi-
tions are equivalent respectively to (2.9) and (2.10).
Since, µ can be chosen, such that δθµ = 0, then this
implies ω can be chosen, such that [ω] ∈ Hk

θ (M) as
required. �

Corollary 2.4: The integrability projection conditions
(2.9) and (2.10) for the perturbed Neumann boundary
value problem (2.8) are equivalent to the following dif-
ferential conditions

δθσ = 0, i∗ ? σ = (−1)kdi∗θϕ (2.11)

〈σ, λ〉 = −

∫
∂M

i∗λ ∧ ϕ, ∀λ ∈ Hk−1
θ,N (M) ∼= Hk−1

θ (M).

(2.12)

Proof: Similarly, using the same setting as above, the
proof will follow from Corollary 2.2. �

Remark 2.5: In applications, the differential condi-
tion (2.6) has the important feature of allowing one
to assess the integral 〈ς, λ〉 =

∫
∂M τ ∧ i∗ ? λ only for

a finite number of Hk+1
θ,D (M), whereas the projection

condition (2.3) would demand a comparison of these
integrals for every infinite dimensional Hk+1

θ (M).
Similarly, for the perturbed Neumaan problem (2.8).

3. Nonvanishing Morse-Novikov cohomology
group

Firstly, we have to exclude another constraint on
the manifold M with boundary rather than to be an
almost nilpotent closed manifold (see, Theorem 1.1),
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which make its Morse-Novikov cohomology group
vanish.

Lemma 3.1 (The Poincaré lemma for Morse-
Novikov cohomology): Let M be a contractible
manifold, then Morse-Novikov cohomology groups
Hk
θ (M) and Hk

θ (M, ∂M) vanish for all k, where
0 6= [θ] ∈ H1

dR(M).

Proof: In [8], Theorem 26 asserts that “If [θ1], [θ2] ∈
H1

dR(M) such that [θ1] = [θ2] then Hk
θ1

(M, ∂M) ∼=
Hk
θ2

(M, ∂M), and Hk
θ1

(M) ∼= Hk
θ2

(M),∀k ≥ 0”.
Since, M is contractible then Hk

dR(M) = 0 and
thus [θ] = [0] (by Poincaré lemma of dr Rham
cohomology). Therefore, Theorem 26 implies that
Hk
θ (M) ∼= Hk

0 (M) = Hk
dR(M) = 0 as required. More-

over, Poincaré-Lefschetz duality of Morse-Novikov
(Theorem 1.6) implies Hk

θ (M, ∂M) vanishes as well.�

Henceforth, M will be a noncontractible compact,
oriented smooth Riemannian manifold with
boundary and a nonvanishing Morse-Novikov
cohomology group. The following theorems provide
the necessarily and sufficient conditions of the
existence solution of dθω = η for [η] ∈ Hk

θ (M) and
for [η] ∈ Hk

θ (M, ∂M), respectively.

Theorem 3.2: Let ξ ∈ �k(M). Then ξ ∈ dθ�k−1(M)
(i.e. ξ is dθ−exact) if and only if ξ obeys the integrability
conditions

[ξ] ∈ Hk
θ (M) and 〈ξ, λ〉 = 0 ∀λ ∈ Hk

θ,N. (3.1)

Proof: Let ξ ∈ dθ�k−1(M) then there exists a solution
ω ∈ �k−1(M) such that ξ = dθω. Using Eq. (1.2), one
can easily verify that ξ satisfies conditions (3.1).

Now, to prove the converse: Eq. (1.4) in
Corollary 1.5 implies

ξ = dθαξ + δθβξ + λξ + dθεξ ∈ dθ�k−1
D ⊕ δθ�

k+1
N

⊕ Hk
θ,N(M)⊕ L2Hk

θ,ex(M).

We infer δθβξ = 0 and λξ = 0 because conditions
(3.1) and Eq. (1.2) imply that 〈dθξ, βξ 〉 = 〈ξ, δθβξ 〉 =
‖δθβξ‖

2
= 0 and 〈ξ, λξ 〉 = ‖λξ‖2 = 0, respectively.

Thus, there exists ω = αξ + εξ ∈ �k−1(M) such that
ξ = dθω which demonstrates that conditions (3.1)
are equivalent to ξ ∈ dθ�k−1(M). �

Now, we have the following theorem for the nec-
essary and sufficient conditions of the existence
solution for the relative case:

Theorem 3.3: Let ξ ∈ �k
D(M). Then ξ ∈ dθ�k−1

D (M)
iff ξ satisfies the integrability conditions

[ξ] ∈ Hk
θ (M, ∂M) and 〈ξ, λ〉 = 0 ∀λ ∈ Hk

θ,D. (3.2)

Proof: As above, it is easy to verify condition (3.2)
when ξ ∈ dθ�k−1

D (M) such that i∗ξ = 0. Conversely,
Corollary 1.5 implies

ξ = dθζξ + δθγξ + κξ + δθεξ ∈ dθ�k−1
D ⊕ δθ�

k+1
N

⊕Hk
θ,D(M)⊕ L2Hk

θ,co(M).

In this case, we must have δθγξ = 0, κξ = 0 and
δθεξ = 0 because conditions (3.2) and Eq. (1.2) imply
that 〈dθξ, γξ 〉 = 〈ξ, δθγξ 〉 = ‖δθγξ‖2 = 0, 〈ξ, κξ 〉 =

‖κξ‖
2
= 0 and 〈dθξ, εξ 〉 = 〈ξ, δθεξ 〉 = ‖δθεξ‖2 = 0, re-

spectively. Thus, there exists ζξ ∈ �k−1
D (M) such that

ξ = dθζξ which proves that conditions (3.2) are equiv-
alent to ξ ∈ dθ�k−1

D (M). �

Corollary 3.4: Let ζ ∈ �k(M). Then ζ ∈ δθ�k+1(M)
(i.e. ζ is δθ−coexact) iff ζ satsfies the integrability
conditions

[ζ ] ∈ Hk(�k(M), δθ ) and 〈ζ , κ〉 = 0 ∀κ ∈ Hk
θ,D.

(3.3)

Proof: Similarly, it is easy to verify condition (3.3)
when ζ ∈ δθ�

k+1(M). Now to prove the converse,
Corollary 1.5 implies

ζ = dθξζ + δθγζ + κζ + δθεζ ∈ dθ�k−1
D ⊕ δθ�

k+1
N

⊕Hk
θ,D(M)⊕ L2Hk

θ,co(M).

In this case, we must have dθξζ = 0, and κζ =

0 because condition (3.3) and Eq. (1.2) imply
that 〈ξζ , δθζ 〉 = 〈dθξζ , ζ 〉 = ‖dθξζ‖2 = 0, and 〈ζ , κζ 〉 =
‖κζ‖

2
= 0, respectively. Hence, there exists η = γζ +

εζ , such that ζ = δθη which illustrate that conditions
(3.3) are equivalent to ζ ∈ δθ�k+1(M). �

Theorem 3.5: Let ξ ∈ �k+1(M), ρ ∈ �k−1(M) and
ϑ ∈ �k(∂M), the boundary value problem{
dθµ = ξ and δθµ = ρ on M,
i∗µ = ϑ on ∂M, (3.4)

is solvable, if and only if

[ρ] ∈ Hk−1(�k(M), δθ ), 〈ρ, κ〉 = 0 ∀κ ∈ Hk−1
θ,D

and

[ξ] ∈ Hk+1
θ (M), i∗ξ = di∗θϑ,

〈ξ, λ〉 =

∫
∂M

i∗µ ∧ i∗ ? λ, ∀λ ∈ Hk+1
θ,D

Uniqueness of the solution of (3.4) is determined by
arbitrary Dirichlet θ -harmonic fields Hk

θ,D.
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Proof: If Eq. (3.4) is given, then it satisfies directly
these conditions. Now, the supposed integrability
conditions on ρ together with Corollary 3.4 imply
the existence of µρ , such that ρ = δθµρ . Hence, we
set µ = µξ + µρ , so Eq. (3.4) turns into the following
Dirichlet problem of dθ ,

dθµξ = ξ − dθµρ and δθµξ = 0 on M

i∗µξ = ϑ − i∗µρ on ∂M

which is solvable by Theorem 2.1 together with
Corollary 2.2. More precisely, conditions (2.5) and
(2.6) for this problem are equivalent to

dθ (dθµρ ) = 0, i∗(dθµρ ) = di∗θ (i∗µρ ) and

〈dθµρ, λ〉 =
∫
∂M

i∗µρ ∧ i∗ ? λ, ∀λ ∈ Hk+1
θ,D .

Thus, there exists a solution µ = µξ + µρ to
Eq. (3.4). �

Furthermore, using the duality given in Section 2
between dθ and δθ , we infer:

Corollary 3.6: Let ϑ ∈ �k(∂M). The boundary value
problem{

dθµ = ξ and δθµ = ρ on M,
i∗?µ = ?ϑ on ∂M, (3.5)

is solvable, if and only if

[ξ] ∈ Hk+1
θ (M), 〈ξ, κ〉 = 0 ∀κ ∈ Hk+1

θ,N

and

[ρ] ∈ Hk−1(�k(M), δθ ), i∗(?ρ) = (±) ? δi∗θϑ,

〈ρ, λ〉 = −

∫
∂M

i∗λ ∧ i∗ ? µ, ∀λ ∈ Hk−1
θ,N .

The uniqueness solution of (3.5) is determined by ar-
bitrary Neumann θ -harmonic fields Hk

θ,N.

Proposition 3.7: Let ϑ ∈ �k(∂M).

1. There exists a θ−harmonic field κθ ∈ Hk
θ (M) sat-

isfying i∗κθ = ϑ if and only if

di∗θϑ = 0,
∫
∂M
ϑ ∧ i∗ ? λ = 0, ∀λ ∈ Hk+1

θ,D .

(3.6)

2. There exists a θ−harmonic field γθ ∈ Hk
θ (M) sat-

isfying i∗ ? γθ = ?ϑ if and only if

δi∗θϑ = 0,
∫
∂M

i∗λ ∧ ?ϑ = 0, ∀λ ∈ Hk−1
θ,N .

(3.7)

Proof: Branch (1) is a direct consequence of Theo-
rem 3.5, since κθ ∈ Hk

θ (M) then the boundary value
problem reduce to

dθκθ = 0, δθκθ = 0 and i∗κθ = ϑ

which is solvable iff conditions (3.6) holds. Similarly,
the dual results of branch (2) follow from branch
(1) together with the fact that κθ ∈ Hk

θ (M) iff ?κθ ∈

Hn−k
θ (M). �

Proposition 3.7 gives us the following interesting
decomposition.

Proposition 3.8: The pullback of the space of
θ−harmonic filed i∗Hk

θ (M) can be decomposed into:

i∗Hk
θ (M) = Ek

i∗θ (∂M)+ i∗Hk
θ,N(M).

Where i∗Hk
θ,N(M) = {i∗κ | κ ∈ Hk

θ,N(M)} and Ek
i∗θ (∂M)

= {di∗θγ | γ ∈ �
k−1(∂M)}.

Proof: Let κ ∈ Hk
θ (M) then it can be written in

the form κ = dθγ + ν ∈ Hk
θ,ex(M)⊕Hk

θ,N(M) by The-
orem 1.4. Clearly, this gives

i∗κ = di∗θ i∗γ + i∗ν ∈ Ek
i∗θ (∂M)+ i∗Hk

θ,N(M).

So, this proves that i∗Hk
θ (M) ⊆ Ek

i∗θ (∂M)+ i∗Hk
θ,N(M).

Conversely, for di∗θϑ ∈ �
k(∂M) and λ ∈ Hk+1

θ,D (M), we
get∫
∂M

di∗θϑ ∧ i∗ ? λ =
∫
∂M

di∗θ (ϑ ∧ i∗ ? λ) = 0.

Hence, di∗θϑ satisfies

di∗θ (di∗θϑ ) = 0,
∫
∂M

di∗θϑ ∧ i∗ ? λ = 0

∀λ ∈ Hk+1
θ,D (M)

which is in fact condition (3.6). So, Proposition 3.7
implies that there exists κ ∈ Hk

θ (M) such that i∗κ =
di∗θϑ . This proves the converse is true as well. �

Proposition 3.9: The space Hk
θ,N (or Hk

θ,D) can
be determined uniquely by the space i∗Hk

θ,N (or
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i∗Hk
θ,D) respectively. Consequently, i∗Hk

θ,N
∼= Hk

θ (M)
and i∗Hk

θ,D
∼= Hk

θ (M, ∂M).

Proof: We merely need to demonstrate this

Hk
θ,N
∼= i∗Hk

θ,N.

Clearly, i∗ : Hk
θ,N → i∗Hk

θ,N is surjective and also it
is injective because ker i∗ = {0}, so it is a bijection
map. Hence, Hk

θ,N
∼= i∗Hk

θ,N
∼= Hk

θ (M). Consequently,
combining this with Theorem 1.6 (Morse-Novikov-
Poincaré-Lefschetz duality), we infer that i∗Hn−k

θ,N
∼=

Hk
θ,D
∼= i∗Hk

θ,D and hence i∗Hk
θ,D
∼= Hk

θ (M, ∂M). �

Theorem 3.10: Given χ ∈ �k(M) and ϑ ∈ �k(∂M).
Then the mixed boundary value problem of perturbed
Poisson equation{
1θµ = χ on M,
i∗µ = ϑ and i∗δθµ = 0 on ∂M, (3.8)

is solvable, if and only if

〈χ, λ〉 = 0 ∀λ ∈ Hk
θ,D. (3.9)

The uniqueness solution of (3.8) is determined by an
arbitrary Dirichlet θ -harmonic field.

Proof: Clearly, Green’s formula for dθ and δθ Eq. (1.2)
implies that Eq. (3.8) can satisfy condition (3.9).

Now assume χ ∈ �k(M) satisfies 〈χ, λ〉 = 0, ∀λ ∈
Hk
θ,D (i.e. χ ∈ (Hk

θ,D)⊥). We can, however, build an
extension µ1 ∈ �

k(M) to ϑ ∈ �k(∂M) such that

i∗µ1 = ϑ, µ1 = δθβµ1 + κµ1 ∈ δθ�
k+1
N (M)⊕Hk

θ (M).

We are able to do so, the component dθαµ1 ∈

dθ�k−1
D (M) of an arbitrary extension µ1 makes

no contribution to the portion i∗µ1 because of
i∗αµ1 = 0. Now, Eq. (1.2) implies that 〈1θµ1, λ〉 =

0, ∀λ ∈ Hk
θ,D which means 1θµ1 ∈ (Hk

θ,D)⊥ as well.
Hence, χ −1θµ1 ∈ (Hk

θ,D)⊥. We are now implement-
ing Proposition 13 in [8], since χ −1θµ1 ∈ (Hk

θ,D)⊥
is smooth, it follows that there is a unique smooth
differential form µ2 ∈ �

k
D ∩ (Hk

θ,D)⊥ which satisfies
the equation1θµ2 = χ −1θµ1 on M,

i∗µ2 = 0 on ∂M,
i∗(δθµ2) = 0 on ∂M.

(3.10)

Now, let µ2 = µ− µ1, then Eq. (3.10) becomes an
Eq. (3.8). Hence, there is a solution to the perturbed
Poisson equation which is µ = µ1 + µ2, where the

uniqueness of µ is determined by an arbitrary Dirich-
let θ -harmonic field. �

Now, we are going to present fruitful analysis for a
special kind of perturbed Poisson Eq. (3.8), but with
ϑ = 0. So, we have the following results.

Proposition 3.11: The eigenvalues of the restricted
Morse-Novikov Laplacian operator

1̃θ : H2�̃k
−→ L2�k

are positive, where H2�̃k(M) = {ν ∈ H2�k
| i∗ν =

0, i∗(δθν) = 0}.

Proof: Let η ∈ H2�̃k(M) and λ ∈ R such that 1̃θη =

λη. So, it follows that 〈1̃θη, η〉 = λ〈η, η〉. But, Eq. (1.2)
asserts that the left hand side can be written by the
form ‖dθη‖2 + ‖δθη‖2 = λ‖η‖2. Therefore, λ must be
positive. �

Proposition 3.12: Let λ1 6= λ2 be two eigenvalues
of 1̃θ , then the eigenfunctions η and γ corresponding
to λ1 and λ2 respectively, are L2

−orthogonal.

Proof: Since, η, γ ∈ H2�̃k(M) be eigenfunctions then
we have 1̃θη = λ1η and 1̃θγ = λ2γ . Clearly, 1̃θ

is a self adjoint operator on H2�̃k(M), so it fol-
lows first that 〈1̃θη, γ 〉 = 〈η, 1̃θγ 〉 = λ1〈η, γ 〉, but
〈η, 1̃θγ 〉 = λ2〈η, γ 〉. Combining all these together, we
get λ1〈η, γ 〉 = λ2〈η, γ 〉which must imply that 〈η, γ 〉 =
0 as required because λ1 6= λ2. �

Remark 3.13: Proposition 3.12 shows that if
λ1, λ2, . . . , λm are distinct eigenvalues of 1̃θ then the
set of corresponding eigenfunctions {η1, η2, . . . , ηm}

spans a subspace of the orthogonal complement of
ker 1̃θ .

4. Future work

In the context of the Atiyah-Singer index theorem
[23], the existence and uniqueness of solutions given
in Theorem 3.5 could be understood as an existence
result for the Dirichlet boundary value problem for a
perturbed nonhomogenous Dirac operator, which we
can define as

dθ + δθ : �∗→ �even
⊕�odd

where �even(M) and �odd(M) refer to differential
forms of even and odd degree, respectively. So that
�∗ = �even

⊕�odd. Furthermore, the Atiyah-Singer in-
dex theorem, asserts that the topological (analytical)
index of every elliptic complex of M is independent. In
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[8], we obtain that the Euler characteristics χ (M, θ )
of Morse-Novikov complex is given by

χ (M, θ ) = χ (∂M, θ )+ χ (M, ∂M, θ )

= χ (∂M)+ χ (M, ∂M) = χ (M).

Hence, these results may correspond to a prelimi-
nary proposal to establish the perturbed generalized
Atiyah-Singer index theorem on manifolds with
boundary.
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